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ABSTRACT

This thesis considers the problem of optimal control of linear discrete-
time stochastic dynamical system with unknown and, possibly, stochastically
varying parameters on the basis of noisy measurements. It is desired to
minimize the expected value of a quadratic cost functional. Since the
simultaneous estimation of the state and plant parameters is a nonlinear
filtering problem, the extended Kalman filter algorithm is used. The open-
loop feedback optimal control technique is investigated as a computa-
tionally feasible solution to the adaptive stochastic control problem. The
open-loop feedback optimal control system adaptive gains depend on the
current and future uncertainty of the parameters estimation. Thus, the
standard Separation Theorem does not hold in this problem. Suboptimal con-
trol system in which Separation Theorem is arbitrarily enforced is also
considered. The identifier is the same as that of the open-loop feedback
optimal control system. Several qualitative and asymptotic properties of
the open-loop feedback optimal control and the enforced separation scheme
are discussed. Simulation results via Monte Carlo method show that, in
terms of the performance measure, for stable systems the open-loop feed-
back optimal control system is slightly better than the enforced separation
scheme, while for unstable systems the latter scheme is far better.
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CHAPTER 1

INTRODUCTTION

1.1 Brief Historical Review

The theory of stochastic optimal control of linear systems with
known dynamics with respect to quadratic performance criterion is fairly
well developed [1],[2],[3],[4]. The uncertainties arise from the plant
and observation disturbances and initial states of the system. The sta-
tistical laws of these uncertainties are assumed to be known. A class
of such problems has been considered in discrete time by Joseph and
Tou [5] and Gunckel and Franklin [6], and in continuous time by Wonham [7].
Under fairly general assumptions of the Gaussian noise structure, the
Separation Theorem or the Certainty-Equivalence Principle [1],[2] is con-
structive in studying the optimal control problem of purely stochastic
systems. The optimal closed-loop stochastic control can be obtained by
combining the solution to two separate problems — optimal linear estima-
tion of the states and optimal feedback control of the correspondiﬁg
deterministic system. The results have been extended to more general per-
formance criteria by Striebel {8] and Wonham [9].

However, in many practical control systems, the dynamics of the
system are not completely known. Such problems occur in a variety of
engineering designs of aerospace and process control systems. In the most
general setting, the plant and observation parameters, the various noises,
the initial conditions and/or description of the inpgts are imperfectly
known. We assume that we know the structure of the dynamics. In our

-O=
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approach it is assumed that all the uncertainties are random processes
with known statistics.

The control of linear systems with unknown plant dynamics has
to be parameter adaptive. An adaptive control system should have an
identifier that generates the estimates of the states, the system param-
eters (adaptive filtering) and their levels of uncertainty. Based on
the identification of the plant, the adaptive controller makes a decision
followed by modification or activation.

If the plant is imperfectly known because of random time-vary-
ing parameters, then the initial identification, decision, and modifica-
tion procedures must be done continuously. This constant self-organization
of the system is characteristic of all adaptive systems. The controller
should reflect (1) the initial uncertainty about the system and the desire
to minimize that uncertainty; (2) the dependence upon current estimates
and the confidence one can attach to these values, and (3) the ultimate
and basic objective to minimize the cost functional. Thus the control
input must be used for the identification of parameters and for attaining
the desired system response. The "dual" nature of adaptive control is
clearly emphasized in this philosophy of adaptive systems. The feedback
estimation controller subsystems approach implies that the Separation
Theorem will not hold in adaptive systems. We shall find that the adap-
tive control gains depend upon the parameter estimation accuracy.

The problem of controlling a system with imperfectly known
parameters operating in a stochastic environment has been considered by
several people. An optimal solution of this problem may be obtained

based on Feldbaum's "dual" control approach [10]. Practical on-line

¢
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computation of the optimal closed~loop control is not currently feasible,
however, due to computer limitations. Rigorous close approximations to
the optimal solution such as the "parameter-adaptive self-organizing"
approach proposed by Stein and Saridis [24] contain cpmputational algo~
rithms too complicated for practical implementation. Therefore, differ—
ent suboptimal but practical solution methods were proposed in the lit-
erature. Lee [30] has suggested an arbitrary separation of the parameter
identification, state estimation, and control. Identification algorithms
based on stochastic approximation [39] or maximum likelihood [40] pre-
clude the use of dynamic feedback control depending on the current esti-
mates of the unknown parameters. Farison et gi [23] have considered a
suboptimal closed-loop adaptive control scheme for unknown systems with
perfect measurements using conditional quadratic cost function to force
separation of identification and control. Florentin [22] and Murphy [25]
considered the stochastic optimal control of linear systems with unknown
but constant gain in discrete time by formulating the identification as
a linear estimation problem and approximating the predictor equations
and, using suboptimal approach, reduced it to a two-point-boundary wvalue
problem. Gorman and Zaborszky [26] considered the problem in continuous
time and arrived at results similar to Murphy's [25]. Assuming separa-
tion, Saridis and Lobbia [27] considered an online stochastic approxima-
tion algorithm for parameter identification and showed that the per-
interval feedback controller gave better performance than the overall
optimal feedback controller. Schmidt [28] worked out a linear
perturbation-controller for systems with unknown parameters by finding

the optimal open-loop control minimizing the cost functional which was
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expanded in a power series. Aoki [4], Spang [11], Bar-Shalom and
Sivan [12], Dreyfus [13]1,{14], and Curry [15] all used the optimal open-
loop feedback approach for linear stochastic discrete-time systems to
obtain a suboptimal closed-loop control. Tse and Athans [16],[29] showed
that the use of.this design concept leads to a stochastic control system
that is adaptive and computationally feasible for on-line implementation.

In this thesis, the open-loop feedback optimal technique is
used to consider the problem of adaptive control of linear discrete-time

systems whose poles and zeros are unknown based on inaccurate measure-

ments, with respect to a quadratic cost functional. The unknown param-
eter values may be time-varying and random. The disturbances in the
state and measurement equations are assumed to be additive, white Gaussian
stationary noise sequences. All the uncertainties are assumed to have
known statistical laws.

The simultaneous estimation of state and plant parameters is
a nonlinear filtering problem. Since the truly optimal nonlinear esti-
mator cannot be implemented exactly with current digital computers, one
is forced to use a suboptimal estimation algorithm such as the extended
Kalman filter [17]1,[18],119},[20]. The approximate expressions for the
conditional means and error covariance matrix are summarized in Section

2.3.

1.2 Structure of the Thesis

The structure of the thesis is as follows. In Chapter 2 we
describe the adaptive stochastic control problem under consideration and

- give the statistical assumptions. We discuss the philosophy of control
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based on the open-loop feedback doctrine. We state the solution to the
resulting deterministic optimal control problem. We define all the vari-
ables and summarize the equations of the open-loop feedback optimal control
algorithm. In Chapter 3 we shall first modify the original cost functional
into a deterministic cost functional. The original problem is thus refor-
mulated as a completely deterministic optimal control problem. Appendix A
contains the details of the reformulation. We then derive the optimal
open-loop control law via dynamic programming. We shall derive the "con-
ditional open-loop optimal cost-to-go" to describe the performance of the
optimal open-loop control sequence. We then interpret the derived solu-
tion in a feedback sense.

In Chapter 4 we present the results on the uniqueness and
existence of the open-loop feedback optimal control. We shall consider the
asymptotic behavior of the identifier and the overall adaptive control
system as the time index k=2 ., We define the enforced separation scheme,
in which the actual parameter values are replaced by their current esti-
mates, and discuss its asymptotic properties. In Chapter 5 we discuss the
open-loop feedback optimal approach and the qualitative properties of the
results obtained. The O.L.F.0. equations given in Chapter 2 and derived
in Chapter 3 are given further heuristic interpretations.

In Chapter 6 we present the simulation results on first-order
linear time-invariant (stable and unstable) single-input single-output
systems. The actual plant parameter values are, thus, unknown constants.
Simulation results will compare the response of the resultant stochastic
control system when 1) the actual parameters are known 2)OLFO design

is employed, and 3) enforced separation is employed. The identifier used
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in 2) and 3) is the extended Kalman filter and reduces to the optimal
filter in 1). 1In Chapter 7 we discuss the results‘of the simulation
studies in light of the general qualitative properties given in Chapters
4 and 5. We consider, finally, the computational aspects of the two sub-
optimal closed-loop control systems. In Chapter 8 we summarize the theo-
retical and simulation results on the adaptive control systems. Further

research in this area are also discussed.

1.3 Contribution of the Thesis

This thesis extends the previous work by Tse and Athans [29] to
a larger class of practical control problems, which involve imperfectly
known system dynamics as well as input gains. We solve this nonlinear
stochastic control problem using the open-loép feedback optimal control
via dynamic programming. The main analytical result is the development
of the open-loop feedback optimal control structure and equations. The
precise variation of the open-loop feedback optimal control adaptive
gains as a function of the future expected uncertainty of the parameters
is derived. Application of the OLFO adaptive gain plus correction term
control to the N-stage state error plus control effort stochastic linear
regulator problem with unknown but constant parameters is compared with
the design in which the Separation Theorem is arbitrarily enforced [23]
in terms of the performance measure. The system resulting from the
arbitrary use of the current estimates for the actual (but unknown)
parameters 1s much simpler to implement since the propagation of the
covariance matrices is not needed. It was expected that the enforced

separation scheme would be worse than that obtained by OLFO design.
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However, simulation results via Monte Carlo method showed that for stable
systems the OLFO control system is slightly better than the enforced

separation, while for unstable systems, the latter design is far better.



CHAPTER 2
PROBLEM DEFINITION AND SOLUTION

2.1 Problem Statement

In this section we shall state the problem of interest — the
control of discrete-time linear stochastic dynamical system with un-
known parameters based on noisy observations of its output. The dimen-
sion of the system is assumed to be known, but the pole and zero loca-
tions may not be completely known and they may vary in a stochastic manner.
Basically then, we assume a canonical structure for the state-space
model of the system, but the actual plant parameter values are not
completely specified. The particular class of problems that we shall
examine has both the plant time constants and input gain vector imper-
fectly known. The performance criterion is chosen so as to minimize the
expectation of a quadratic form in the state and control variables over
a fixed interval of time.

Suppose we have a discrete-~time n-dimensional linear dynamical
system, with an imperfectly known initial state with noise disturbances
entering the plant equation and the ocutput measurement, governed by the
following vector stochastic difference equations (integer k is the time

index)

Plant: x(k+l) =A(k)x(X)+b(k)u(k)+E(k) k=0,1,...,N-1 (2.1.1)
S1:
Measurement: g_(k)=g§_(k‘)+_6_(k) k=0,1,...,N (2.1.2)
where we assume that x(k),b(k) and £(k)eR", z(k) and B(k)eR", C is a
known constant mx n matrix, and u(k) is an unconstrained scalar input.
Furthermore, we assume that the actual (but unknown) n x n plant matrix

-16-



-17~-
A(k) has the following canonical representation or is convertible to this

equivalent system by a linear nonsingular transformation.[30]

B ! Fa (k)
, 1
' a, (k)
A(k)={0 1 atk)=|: er" (2.1.3)
- - —n-1 |’ = .
L | 2n )]
“ 2'(k)+

The matrix A(k) is called a companion matrix. The unknown plant param-
eter vector a(k) and gain vector b(k) are assumed to satisfy the differ-
ence equations

a(k +1)

it

a(k) + §(k) (2.1.4)

b(k+1) b(k) + y(k) (2.1.5)
respectively, where 6(k), X (k) €R". We shall assume also that the triplet
[A(k) ,b(k),C] of Egs. (2.1.1) and (2.1.2) represents a completely control-
lable and completely observable system [31].

We shall assume that the stationary random sequences {E(')LQ(')I
_§_(') ,1(')} are white Gaussian, zero-mean, and uncorrelated with each other
and with the Gaussian random vectors {3_{_(0) »a(0) ,E(O)}. The statistical
laws of the underlying random vectors are assumed known for all k. The
symbol N[E'E] denotes normal distribution with mean equals to m and finite
covariance matrix equals to L. Thus, let

x(0) ~ N[_x_o,glxo] (2.1.6)

a(o) ~ N[a_,Z_ ] (2.1.7)

)
—ao

b(0) ~ N[b_,Z,_] (2.1.8)
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E(K)~ N[Q,E(k)T (2.1.9)
8(x)~ N[Q,8(k)] (2.1.10)
S(k)~ N[O,A k)T | (2.1.11)
(k) ~ NI, T (k) 1 (2.1.12)

where the covariance matrices have the properties

=3 >0 (2.1.13)
—xX0 — X0 — —

=3I >0 (2.1.14)
—ao —ao — -
Lo=LZio 20 (2.1.15)
E(k)= E'(k)> 0 (2.1.16)
O(k)= 0'(k)> 0 (2.1.17)
A(k)= A'(X)> 0 (2.1.18)
L(k)y=T"(k)> 0 (2.1.19)

Thus, additive discrete white plant driving noise_g(k), observation noise
ij), and parameter noiseslg(k) and.x(k) are used to model the uncertain-
ties in the state evolution x(k), the measurements_g(k) and the parameter
vectors a(k) and b(k), respectively.
We are also given a quadratic cost functional J(u) which is given
by
N-1

x' (N)Q(N)E_(N')+% 2 {x' (k)g(k)i(k),-kr(k),uz(k)} (2.1.20)
k=0

N

J) =

with N fixed and finite. The objective of the problem is to find the
optimal control sequence that minimizes in some sense Eg. (2.1.20). We
will want to make use of all the available information in the computation

of the optimal control sequence. Thus, the control input at each time k
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will, in general, be a function of the measurements and all a priori
information up to and including time k. We are seeking, therefore, a
pPhysically realizable control.

Since the system Sl is operating in a stochastic environment,
both the state trajectory x(°*) and the input u(*) are random sequences.
A suitable performance criterion to choose then is the scalar real-
valued cost functional

N-1

= A 1 ' ] 2

J(w= 3 Ex'Ngmxm+ } x'(KQU0x (k) +r (ku® (k) } (2.1.21)
k=0

where E denotes expected value. The expectation is taken over all the
underlying random processes, a(0), b(0), x(0), &(*), 6(*), 8(*), and
Y(*). Thus, given the noise-corrupted unknown linear dynamic system,
the objective is to find the admissible control sequence

U(0,N-1) é{u(j)}g];é which performs best "on the average" such that it
minimizes the performance measure J(u) of Eq. (2.1.21) subject to the
system equations (2.1.1) and (2.1.2).

Physically, the optimum control sequence will "on the average"
drive the state x(k) of the system S1 to zero without excessive expendi-
ture of control energy. We shall assume in Eqg. (2.1.21) that Q(*) is
a positive semidefinite symmetric matrix and r(e) is a positive scalar,
and that the initial and final times are fixed and finite (N <o),

To complete the problem stétement we must now define what we
mean by admissible control sequence. For a stochastic optimal control
problem it is very important to specify precisely that data or informa-

tion pattern which is available for determining the control input.
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Depending on what measurements the computation of the control sequence
U(0,N-1) is based on exactly, different formulations of the optimal
stochastic control problem are possible. In the general case when the

parameters are not independent random variables, one cannot obtain ex-

plicit solutions to the optimal closed-loop controller, so that one has
to resort to a reasonable and feasible controller. We shall, therefore,
restrict our consideration to the deterministic open-loop controls, and

derive the open-loop feedback optimal controller.

The open-loop feedback optimal control policy can be inter-

preted as follows. [4], [12], [13], [15] At time k (k=0,1,...,N-1) we
are to control a system based on measurements taken up to time k; we
assume that no observations will be made in the future. Under this

assumption one generates an optimal control sequence {uo(jlkﬂg_l accord-
J—

k
ing to the open-loop policy. Only the first element of this sequence
* A o . .
u (k)=u (k|k) is actually used. The applied control changes the prob-
abilistic information provided by the estimator at time k+1l. At time
k+1, an additional measurement becomes available. The next control

*
input u (k+1) is again computed according to the open-loop policy,; but

based on all the information at time k+l. Thus, we shall recompute

the open-loop optimal deterministic control after new information be-

comes avallable at each time instant. This technique applies in gen-

eral, and includes the case when the parameters are random. It turns
out that this open-loop control can be expressed as a function of the
state and parameter statistics; hence, the name open-loop feedback
optimal (O.L.F.0.) is used. The form of the open-loop feedback con-

troller is shown in Fig. 2.1. The control at each time k is an explicit
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function of state and parameter estimates and their level of uncertainty.
The controller is to be designed from a deterministic system, once the
estimator and the predictor are obtained. We shall see that the open-

loop feedback optimal control sequence is in some sense "adaptive".

2.2 Definitions of Variables

Let the present time be indexed by k. Denote the accumulative
observation statistic, that is, the (random) observation outputs or the

available information at time k by

z, 8 2(0),2(1), ..., z(x)} (2.2.1)

* * -
Let us also assume that the optimal control sequence U (O,k—l)éﬁJCﬂ}§_é

has been applied to the system. Let us then define for j>k the condi-

tional expectations

BILL E{x(3)]z,} (2.2.2)
EGIIERACNES: (2.2.3)
b3 K = Bb(3)]2,) (2.2.4)
the error vectors
gx(j]k)ég(jlk)-gc_(j) (2.2.5)
e G0 aG0 -an) (2.2.6)
e('lk)ég('lk b (3 7
&, (Glx)=b(3]K -b(3) (2.2.7)
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and the conditional error covariance matrix

Gl 8 Bt e Glnfel Gl e Glx tef (5]x]z

K}

where _E(j|k) can be decomposed into its submatrices:

oGl _GloiE  (Glk
6o =|E  Glo:Z Gl Glx
L 30z, Gl iz, Gl

(2.2.8)

(2.2.9)

Let us also define for k<j<N-1 the 3nx 3n Jacobian matrix

of the nonlinear augmented state vector system

x(i+1) x (i) €(1)
s2: | ati+1) | = Ai,a(d),u ()] a |+] )
b(i+1) b() | |y

x (i)

2(1)=C |al(i)|+ 6(i); i=0,1,...,k-1

b(i)
where
A():0 w (1)1
Biamu'ang | & I 2 ]
9 101

and A(i) is given by Eq. (2.1.3)

(2.2.10)

(2.2.11)
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- ~ . - 'A . . * 3
Hence, the 3n x 3n Jacobian matrix E}i,g}l]l),fjlll),u (i)) of

Eg. (2.2.10) is given by

A . A . % 9
A(ifi): X(i|i) s u (I
".A..A.l.*.A'”." -5
Fai,atili), x@lpu @@=} o 1 I I 0 (2.2.12)
0o - 0 - I
| - ¢ = .+ ==
where
IS RS
A(L[D)E ] ceerennenns (2.2.13)
« 3" (il
and .
0o °
A A - :(—)'n—l
FCEAES L] I I (2.2.14)
A
« X' (i]1)»
2.3 Structure of the Open-Loop Feedback Optimal Control

We shall state in this section the solution to the deterministic
optimal control problem to be formulated in Section 3.2. The detailed
derivation via dynamic programming is given in Section 3.3. The symbol
uo(j|k) denotes the optimal open~loop control conditioned on the observa-
tions up to and including time k, and is given for J> k below. It should
be stressed that %}jlk) and Ejjlk) are not the exact conditional means

and error covariance matrix.
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w® (3 %) = =47 (3 [0 +b' (3 [0 K G410 B3 178" (30 K (5+1%) 250

% (3%)
+ ¥ Gloar Grloo 5]k (2.3.1)
XGRS

where the n(2n+1) x n(2n+1l) symmetric matrix gjj+l|k) is the unique
solution of the nonlinear matrix Riccati difference equation for

k +1<3<N-1

K3 [x= 0" (3]0 [R(3+1]10 =R (5+1[0) B30 (5%

+ B GIROKRGH0BG 0 B (IR G071 0G0+ (5K

(2.3.2)
satisfying the boundary condition.
om o o
kKN[k = 0o 0,0 (2.3.3)
n
o 9o o,
n

where the parameters r(j|k), b(j|k), 2(3|x), d(3+1]k), and V(j|k) will
be defined below.

The open-loop feedback optimal control actually applied at
time k is given by

u k) = O k|K) (2.3.4)

To find the open-loop feedback optimal control sequence, we have to
solve the open-loop control problem for k=0,1,...,N-1. We shall show
in Section 3.4 that we can write the open-loop feedback optimal control
as

* ~
u (k)= 9" () x(k|k)+u_(k) (2.3.5)
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where the 1 x n (row) vector

¢ 0h- {[E(k|k)+§' (x| %) ;~<_(k+1|k)§(k|k)] Bk |x) K (k+1 k) & (k k)

~ -

1
+ T xlwdar(k+l]x)}

N

(2.3.6)

Jo Jo g+

N

=3 -

is defined as the optimal open-loop feedback adaptive gain. We shall

call the scalar

~ ~ ~ -1, ~
uc(k)é -{ [E(k k) +D' (klk)g(kﬂlk)g(k[k)] B' (k|X)K(k+1[X) @ (k| k)

L o o o |z «lw
+r (k|pa' Gk} l0 I, 0 ||O (k| %) (2.3.7)
n
o 0  I,lle «lk
n

the adaptive control correction term.

The structure of the overall open-loop feedback optimal control
system is given in Fig. 2.2. The digital computer implementation of the
open-loop feedback optimal control algorithm is straightforward. 1In
Fig. 2.3, we give a flow chart description for on-line computation of the
open-loop feedback optimal control. We summarize below all the equations
needed for the computation of the optimal open-~loop control sequence.

a. Identification Equations

Since the simultaneous state and parameter estimation is a non-

linear filtering problem, we shall only give the approximate expressions

for the conditional expectations of the state and parameter estimates
and their error covariance matrices as generated by the extended Kalman

filter algorithm [17], [33], [18)}. The structure of the extended Kalman
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*
filter is given in Fig. 2.4. We assume that U (0,k-1) has been chosen
and that Zk is available. Then the estimates of the augmented state

vector of S2 Eq. (2.2.10) are generated via the equations

X (i+1] i+1) 2l
§(1+1|i+1) = [£3n—_G_(i+l)§]z(i|i) 'é.(i]i) + G(i+l)z(i+1) (2.3.8)
b(i+1]i+1) B(ili
i=0,1,..., k-1
where
- * -
A(lll) 0 u (i)I
2 A
A(ili)= 0 I 0 (2.3.9)
A 0 L °
0 0.
S—— - - —n —

with the intial estimation vector given by

~ f ' -l _

x(0 oy x_+ L C'(CL C'+0(0) " (z(0)-Cx )

il 4 a, (2.3.10)
b(o]o) b,

The filter gain matrix G(i+l) in (2.3.8) satisfies the relation

Gli+l) = Z(i+1]1) 3 (EZ(i+1]1)C'+ 0 (141" i=0,1,...,k-1 (2.3.11)
=2 (i+1]1+1)C g7t (141) (2.3.12)

provided the indicated inverse exists. The extended Kalman filter gain
matrix cannot be precomputed since from Eq. (2.2.12)
. [} ~ . ~ 3 . ~ . ] * s . . o ~ . ~ * ~
e+l =F(isalify) xi]1),u @ @l oF (tralili),x(i]1) u @) +E(i)

i=0,1,...,k-1 (2.3.13)
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is a function of the current estimates of the state x(i) and parameter

~

a(i), and hence, dependent on the observations. The matrix g(i) is

given by
B o0 0
~ A . ,
Z(1)= 0 _A_(:L) 0 i=0,1,...,k-1 (2.3.14)
o o I®

g(i+l|i+l) is a 3n x 3n symmetric positive semi-definite matrix given by
T(i+l|i+l) =2 (i+1}1)-G(i+1)CR(i+1[i) i = 0,1,...,k=1

=[I-G(i+1)CIZ (i+1]4) [I-G(i+1)C] '+G(i+1)Q(i+1)G' (i+1)

with the initial condition (2.3.13)
s - c'cz c'+0(0)) tex 0 o_
—X0 —XO0— ——X0— — ——x0 = -
A
YL (olo)y=
Z (0o o I, o (2.3.16)
0
] o Ly

b. Predictor Equations

It will be shown in Appendix A that for the open-loop control

policy we have the following deterministic dynamic equations for j > k

x(3+1x= G102 G+ B3 [Ku) (2.3.17)
a(3+1x) = A(3lx) (2.3.18)
btk = E(jlk) (2.3.19)
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given the initial conditions g}k]k), g}klk), gjklk) from Eq. (2.3.8).

The submatrices of E}j+llk) are given by
I Gln=aGInE, Gl YA (Gl0+AG 0L (3 Ik)fg'(j[k)+§(j|k)§'xa(j|k)?_;'(j|k)
+u(j)§(j|k)§«b(jlk)+u(j)§;(b(j|k)§' G+ (RGO I_, (3]K)

I, Gloge o+’ GREG o +aaz,_Glo+26)

where
9L 019
AGlod] ... R GloRf ... (2.3.20)
- 3 (3% X' (3%
Exa(j+l|k)=£(jlk)_gxa(jlng(j|k)§_aav(j|k)+u(j|k)§_éb(j|k) (2.3.21)
gxb(j+1|k)=§(j|k)§xb(j;k)+g(j|k)§ab(j|k)+u(j|k)§bb(j|k) | (2.3.22)
L_Geilr=E_ (R + AG) (2.2.23)
;_ab(j+1[k)=§_ab(j|k) (2.3.24)
I GHn= I G+ IH) (2.3.25)

given the initial conditions I__(k|k), I (x|x), I (x|, I (k[K),Z (KK

and L, (k|k) from Eq. (2.3.15).

c. Parameter Equations

To compute the open-loop feedback optimal control we need to de-
termine the parameters ®(j|k), V(j|k), d(3+1|k),b(j|k), r(j|k) for j=k,

*
k +1,..., N-1 using the equations below, (2.3.26) - (2.3.34).

. . n
s.-+, € denote the natural basis vectors in R
=1 =2 -n
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. 7]
F-X-xb(J ey

Exb(jlk)gn

-

[ j|x
—-xa(j )21

Z:-xa(j|k)2‘n
» -

b (3|

Zy (jIk)gl

L Glne

Z0le

Eab(3|k)§n

e -

-Eab(jlk)gxx(j+l|k)§n

A'Gloe (+llke,

A Glor  (G+1xe

0

o

n
€R

ER

+1
€Rn(2n )

ERn(2n+l)

(2.3.26)

(2.3.27)

(2.3.28)
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where

pnn(j+l|k)=e P x(j+l|k)gn

VG 0= -aG+1] 0 E G v ar Gl (2.3.32)

Since we are given r(j)>o,_Q_(j)39’ and _Zibb(jlk) , Exx(j|k)—>--o—

from Eg. (2.3.24) and
e Glo=a'Gloe  G+iloaco@ e aln=0m

j=k,...,N-1 (2.3.33)

we can define the "modified control weighting" to be

Tlk) = r(3) + trgbb(jlk)gxx(j+1lk)>o (2.3.34)

and it is positive definite. We remark that the matrix P (jlk) is de-

pendent upon observation, and, thus, cannot be precomputed.



CHAPTER 3

METHOD OF SOLUTION

3.1 Cost Transformation

Suppose at j = k, k =0, 1,...,N-1 the system is at x(k), then

we can rewrite the main cost functional Eq. (2.1.21) as

N-1 ‘
Sw = 2] x@e@x )+ N7
3=k
1 NSl 2
+ 5 E{x' (M x M) + ] x93 x(3) + r(Hu (i}
3=k
k=20,1,...,N-1 (3.1.1)

Using Bellman's principle of optimality, we have the equivalent minimi-

zation problem at time k.

—

3, J(U" (0,k-1),U(k,N-1))

ne>

1 Nl 2
SEx'Mamxm + T x'()2(3)x() + r(Hu" ()}
j=k

k=0,1,...,N-1 (3.1.2)

The optimal closed-loop control policy uses the a priori known statistics

of the future measurements. The a priori probability density functions

are those at time j = k.

The suboptimal closed-loop control policy we are solving con-

sists of replacing the closed-loop controls with open-loop controls for
3 > k. It does not take into account the knowledge that future measure-

ments will be made. Therefore, the objective of the problem becomes

-36-
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to find a future control sequence such that the average value of the

cost-to-go given by

N-1
3, = FE MMM + ] x' ()e()xG)]z)
3=k
1 NGt 2
+3 1 (et k =0,1,...,N-1 (3.1.3)
32k

conditioned on the total available data at the present time k, is mini-
mized (open-loop) subject to the constraint equations (2.1.1)-(2.1.2).

We can take u(j) out of the expectation in (3.1.3) since the
future control sequence {u(j)}?;i is assumed to be deterministic, and the
optimal open~loop control sequence {uo(j]k)}§;i is only based upon the
measurement statistic Zk. It is possible now to formulate exactly the
stochastic control problem Egs. (2.1.1),(2.1.2), and (2.1.21) as a com—

pletely deterministic optimization problem.

Using Egs. (2.2.2)-(2.2.9) we then obtain the conditional cost

(3.1.3) as

l N N l
3, = FRwlkominlk) + S trigmg (]k)]

N-1
1 Avoga NP . . 2.
+ 3 Zk{i' (Glx)IQ(I&(3]k) + tr[g_(j)_Z_xx(jlk)] + r(3Hu” (5}

k=0,1,...,N-1 (3.1.4)
since for any matrix M
E{x' x|z} = 2 GlougGxo + ele Glore (5]x}
(3.1.5)

We have obtained, therefore, in Eq. (3.1.4) the deterministic form of the

expected value of the cost-to-go.
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3.2 Open-Loop Control Problem Definition

To complete the formulation of the deterministic open-loop con-
trol problem, we will need the deterministic dynamical equations satisfied
by gjj|k) and gxx(j|k) (3 Z_k), the respective estimates of the state vector
and its error covariance matrix conditioned upon the output measurements
Zk and the past control history U*(O,k—l). We shall, however, develop only
the approximate expressions for g}jlk) and gxx(jlk) in Appendix A. These

expressions and the identification equations (2.3.8)-(2.3.16) are then

used to define a completely deterministic optimal control problem for

the kth step, whose solution would yield the optimal open-loop controls

for k < j < N-1.

Given: R(3+1]k) = A(3|KIX(i|k) + B[R u(3) (3.2.1)
where
aG+1K) = adi|x (3.2.2)
b(i+1]k) = b(3| k) (3.2.3)
ZGHLK) = F(5,80|%),2G K aGNEGIRE (5,26 %),
23| ,u(i)) + () (3.2.4)
where
é}jlk) X(j|k) fu(iI

I
o

F (3,203 x(]%) ,ug)) &
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I
Jo

) & TAG) ;O (3.2.6)

The initial conditions are %ﬁk!k), é(klk), @jklk), and g}klk)
specified by the extended Kalman filter, (2.3.8)-(2.3.16).

The aim is to find a deterministic control sequence
{u(k),...,u(N-1)} such that it minimizes in (N-k) steps the average

value cost-to-go

3k = —;-{3' (N[K) Q)R (N[ k) + tr[DNI(N| k)] + j{:g (3] KIQ (RG] %)
FerBHEG|RT + r(Hud) (3.2.7)
where
omM) 1 0 o0 2(3) 10 10
300 = ggng s - ggng o
gggn _O_ggn

and Q(N), 3(j) > 0 and r(j)> O subject to the constraint equations (3.2.1)-
(3.2.4). We shall also assume'that Q(3) and Q(N) are not both the zero
matrix. The terminal states 3}N|k) and ng|k) are not specified.

We see from (3.2.7) that the conditional cost~to~go depends on
the estimate gjj|k) and the error covariance matrix gxx(jlk) generated
by the predictor equations (3.2.1)-(3.2.4), and u(j), an arbitrary deter-
ministic input for k < j < N-1. The difference equation (3.2.1) for
g(j|k) involves §jj|k), §jj|k) and u{j). The difference equation (3.2.4)
for gxx(jlk) involves the error covariances gbb(jlk), gxb(jlk), gxa(jlk),

;aa(jlk) ; L, (3]%) and the estimates a(jlx), &(3|x), and the control u(j).
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We have then a well-posed deterministic optimal control problem. The
deterministic formulation allows us to use the discrete Minimum Prin-
ciple [34] to derive the necessary conditions for optimality (in the
open-loop feedback sense). We shall, however, present an alternative

method of solution via dynamic programming in the next section (35].

3.3 Open-Loop Control Problem Solution

In this section we shall derive the result stated in Section 2.3,
using the dynamic programming method for the discrete optimal control
problem defined by Egs.(3.2.1)-(3.2.4) and the cost functional (3.2.7) to

be minimized is

5= 2 & 0omRm|K) + tr g Ik )
N-1
+ 1 L@GLEG]K uE) ) (3.3.1)
3=k

where

L@G0.ZG0uE 9§ SR GRG0 + e 3HEG]R

+ r(3)u2(5)} (3.3.2)

To use the standard dynamic programming algorithm, we shall
define the "conditional open-loop optimal cost-to-go" at j = i, for
ig[k,N~-1]. The superscript circle denotes open-loop optimal. We shall
define lek(g(ilk),gjilk)) as the minimum cost remaining along the optimal
trajectory starting at time i and the initial "states" g(ilk) and %(ilk)

given by (3.2.1)-(3.2.4). Hence we have the functional equation
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E?Ik(ft_(ilk) ,E(i]X)) = min {-é- {&' (NwQMEW|K) + tr BVEI(|K}
u(j)
j=i,i+l,...,N-1
N-1
+ ) LRG| ,EG]k) a9}
j=1i
i=k,k+1l,...,N-1 (3.3.3)
E‘i’lk(g(ilk) Z(i]Kk)) = min {L(X(i|k),Z(i]k),u(i),i)
u(i)

—o

SRTIe SCERTRMAdERIE b)Y

+

i=k,k+1,...,N-1 (3.3.4)

using Eg. (3.3.2). The method of dynamic programming yields necessary

conditions based on the optimality principle or condition Eg. (3.3.4).

n

-0
W .
e remark that J, (3nx3n)XR

lIk(',') is defined as a function on M

From the error covariance equation (3.2.4) gjjIk) >0, j=i,i+l,...,N-1 if
and only if I(ilk) > 0, i = k, k+l,..., N-1. Thus, from Eg. (3.3.3) we

obtain that
-0 A .
> > 3.
.ﬁhgg)_mlfg_g (3.3.5)

Hence, if Q(i) > 0 and r(i) > 0, then Ty, > 0 and L > O in Egs.(3.3.3)

k
and (3.2.4).

The terminal time is N. Let us define

i

(3(N—l|k),§jN—llk)) optimal value of J for one-stage

-0
IN-1]k
control process starting at i=N-1

and using an optimal u(N-1).
Using (3.3.5) the conditional optimal cost-to-go is given by

—o

JN_llk(g(N—llk) ,Z(N-1]k)) = min {R(R(N-1]k),Z(N-1]k),u(N-1))}

u(N-1)
(3.3.6)
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where

A

R (R (N-1]k),Z (N-1] k) ,u(N-1)) = L(&(N-1]k),Z (N-1|k) ,u(N-1),N-1)
o 20 o
+ Jle(i (N]%), 2 (N|k)) (3.3.7)
But,
=0 20 o) 1 »~o0!' ~0 1 o)
Jle(l(_ (N[X)L,ZTN[K) =5 X (N[RQM X (N[k) + S trgg,  (N[K)
(3.3.8)
*
Hence we obtain
R(x (N-1]k),% (N-1]|k) ,u(N-1)) = X' (N-1]k) Q(N-1) X (N-1] k) + trQ(N-1)g _(N-1 %)
2 co' N o)
+ r(N-Du”(N-1) + x° (N[K)QMR™(N[k) + trQMg _ (N]k)
(3.3.9)

Using the system equations (3.2.1)-(3.2.6) we get

R(x(N-1]%),Z(N-1]k) ,u(¥-1)) = X' (N-1|K)QN-1)X(N-1) + trQ(N-1)T__ (N-1]%)
+rv-Dul(-1) + %' (8K A' (-1] k) 0 (A (N-1] K) R (N-1] k)
+ X' (N-1]X)A' (N-1] k) (M) B (N-1] k) u (N-1)
+ u(N-Db' (v-1]K)Q (WA (N-1] k) X (N-1] k)
+ (-1 b (4-1] k)0 (N b (N-1] k)
+ te{om A(-1[X)Z,  (N-1]K)A" (N-1] k)
+ 2801 KL, (N-1[10X' (N-1]k) + 2A(N-1[K)E,  (N-1]K)u(n-1)

+ X1z (-1 X' (8-1]k) + 2% (N-1|K)Z_, (N-1] k) u(N-1)

+

2 -
u® (-1 (-1 k) + EN-1)]) (3.3.10)

*
We shall drop the factor of 1/2 in R(*,*,*) for notational convenience.
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If we consider 2}N—l|k) as fixed, then we can minimize Eg. (3.3.6) with
respect to u(N-1) only to yield uo(N-l]k). Note that the optimal open-
loop control will depend on the state %jN-lIk). Performing the minimi-

zation of R gives

aR _ 3 . A' _ A N A~ -
SamoDy = X (N-Du(N-1) + 2b' (N 1|k) (M)A (N-1]k) X (N-1]k)
+ 20(N-1B' (N-1[K) QM B(N-1]k) + 2tr[QMAN-1[K) L (N-1]k)
+ QUNX(N-1[KE_ (N-1]k) + u(¥-1)Q(NE, (N-1]k)]
oR ' B (N- om-
Fo =TT =0 = [x®-1)+trpN I (N-1]k) +5' (-1 k) QN B (N-1[K)M(N-1 k)
u®(N-1]k)

+ ﬁ' (N-1]|X)Q(N) A (N-1]k) X (N-1|k)

+ e QMAN-1[KZ,, (N-1]k) + QM X(M-1[ KT, (N-1]k) ]
(3.3.11)

Therefore the optimal open-loop control is given by
w®(N-1k) = —Z;i(N-llk){g' (N-1]k)Q (W A (N-1] k) X (N-1] k)

+ trlgMAM-1]K)Z,  (N-1]k) + Q) x(N-1]K) Z_, (n-1[x)}
(3.3.12)

provided the indicated inverse exists, and

A >, ~
Z,, 1% £ x(v-1) +b' (-1[K) QM b1-1[k) +tr M E,  (N-1[k)
(3.3.13)
It can be shown that we can write (3.3.12) in the form of

Eq. (2.3.1) using Eqgs. (2.3.26)-(2.3.34)

wWCm-1]k) = - EN-1]k) +B' (1] 0 E®[0Bm-1]x) "B (v-1] k)

£ (N-1]k) 2(N-1]x)
i(NIk)g(N-llk) g(N—1|k) —~r-l(N—1|k)i'(N|k) g_(N-lIk)

(3.3.14)



-44-
where B}le) is given by Eg. (2.3.3). Substituting this value of uo(N—lIk)
Eg. (3.3.12) in Egs.(3.3.6)-(3.3.10), and do some manipulating we obtain

the conditional optimal cost-to-go

2-3§_l|k(g(N-llk),g:_(N-llk)) = g'(N-llk)g(N-l)i(N-llkHtrg(N-l)gxx(N-llk)

-1 2, ~ _ A .
zuu(N-llk){g (N-1]k) Q (N) A(N-1| k) X (N-1]k)

+

wlmAM-1]10F ®-1]%) +mEm-1K)F_ov1]xk} 2

<+

%' (N-1]K)A' (N-1] k) Q (M A (N-1] k) R (N-1] k)

+

tr{QMAM-110Z,  (v-1]x)A" (v-1]k)

+

20MAN-1]1)F _ (N-1[10X" (N-1]K)

+ QX (N-110Z__m-1]10X'0-1] k) + Q) E(n-1)}
(3.3.15)
= X'(N-1[k)Q(N-1) X (N-1[k) + erlZ, m-1[0@'0-1]k)
oM A(N-1]k) +Q(N-1))] + tr[g(N)g' (N-1|k)
t_ (F10R'0-1[k) + 20 AN-1]K)E _ (8-1]k)
X' (-1]k) + QM) EM-1)] +X'(N-1 k)A' (N-1]k)
_Q_(N)?_\(l\l-llk)g(N—llk)—Z;i(N-llk)[g'(N—llk)
QM)A (N-1]k) X (N-1]k) +tr[Q(N)A(N-1|k)
a 2
§_xb(N—llk) +2(N)§_(N—1Ik)§ab(n-1|k)]}
(3.3.16)

which has the closed form



& (N-1 k)

%< o(N-1]k) |, K(N-1]|k)

_o ~
Tn-1 i R(-1]k) ,E (8-1]%))

p (N-1|k)

1 ~, n
+Strlr  (8-1]x) @' (N-1[K)p,  (N[K)AN-1]k) +Q(N-1))]

1 = —
+SEroMEM-1) ; B (N[k) = o) (3.3.17)

if we choose K(N-1|k) such that
K(N-1]k) = &' (N-1|K)R(N|K) @(N-1]k) + V(N-1]k)- @' (N-1]k)
RN 0BO-1]K0) (F-11Kk) + B* -1 R0 B o-1]0)7t
b' (N-1]))R(N] k) & (N=1]k) (3.3.18)

where ngIk) is given by {(2.3.3) and the parameters are computed from
Egs. (2.3.26)-(2.3.34). We have thus far assumed that z_ (N-1|k) is
nonzero. In fact, in order that the control law (3.3.14) minimizes the
cost-to-go, Zuu(N—llk) must be positive definite.

In Equation (3.3.17) we have determined the expression for the
conditional optimal cost-to-go at step N-1. Now using Equation (3.3.5)

we have

0 | (xN-2]k),EM-2 k)) = min {L&Em-2]k),ZN-2]k) ,u(n-2),N-2)
N-2|k-— - u(N-2) -

+33_1|k(3°(N-1|k),§°(N—1|k))} (3.3.19)

Using Equation (3.3.17), this reduces to a form exactly identical to Eq.

(3.3.6) except for the indices. Thus we have, comparing Equation (3.3.9)
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R(X(N-2]k) ,Z(N-2[k)) = &' (N-2]k)Q(N-2) % (N-2]k)

+ tr Q_(N—2)§xx(N—2|k) + r(N-2)u2(N—2)

%2 (N-1]k) %% (-1x)
v < |Cmm1]r | xm-1[0 |0 1) | >+ sn-1)
Bt Bt
(3.3.20)

where the scalar

sN-1) = tr(Z° (N-1]k)p° (N-1]k) + P°_ (N|K)E(N-1)]  (3.3.21)
—XX XX —XX -
and
% -1]k) = A% (v-1]K) QA% (N-1[k) + Q1) (3.3.22)

and ng—llk) is given by (3.3.18). The cycle now repeats. Thus, by

induction on i we have shown that the optimal open-loop control sequence
is given by

wiilk) = -{iFale + BraloRarobalols okl 2l

~
F(ilk)]
+ Thalar el ol

a(ilxy (3.3.23)
L)(i 'k)} i=k,k+l,...,N-1

and the conditional optimal (minimum) open-loop cost-to-go is given by

% (i %)

% (il k)
EAMELERIIIER D =3 < |oiho |, Kaho oo >
o k) otilx)
1 .
+ 3 s(i)

(3.3.24)
i =k,k+1,...,N-1

gy
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where
N-1

s(i) = el (i[Kp _ (ilk) + ] B
j=i

LG+ EGD] (3.3.25)

and g(ilk) satisfies the matrix difference Equation (2.3.2) and the
parameters are computed from Equations (2.3.26)-(2.3.34).

The matrix E(ilk) is a symmetric matrix. Taking the trans-
pose of both sides of Equation (2.3.2) we find that

R' ]k = @' (] {K' (i+1|k) - K'(i+1| 0B ik F(i| + B' 1]k
K (+1]10B (10078 (4 ok (+1]K0}e (1] %) + V(i]k)
i=k,k+1,...,N-1 (3.3.26)

since zﬁilk) is symmetric. Comparing this with Equation (2.3.2), we
observe that both E}i|k) and éﬂilk) are solutions of the same difference
equation. At i = N, we have the boundary condition gf(N[k) = é}N).

Since é}N) is symmetric, é}N) = é}(N), we conclude that
K(N[K) = K' (N|k) = Q(N) (3.3.27)

Since i(i|k) and gf(ilk) are solutions of the same difference equation
with the same boundary conditions, we conclude g(i|k) = g}(i|k) from
the uniqueness of solutions of difference equations.

We note that in the conditional optimal cost-to-go equation
(3.3.24), that it depends on the initial estimation of the state gjilk)
and g(ilk), and the random disturbance g (j) which is forcing the system.
The presence of the plant noise (Z(j) # 0), therefore, increases the

cost-to-go on the average, since tr[gxx(j+l|k)§jj)] is nonnegative if

Exx(j+llk) and Z(j) are positive semidefinite.
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3.4 Feedback Interpretation

In this section we will show that the open-loop feedback optimal

sequence applied is
*
u (k) =¢'RK[K) +u (k) 5 k=0,1,...,81 (3.4.1)

Let us rewrite Eqg. (3.3.23) at i = k. .

1

W k|k) = -{F&][X) + B k|KRK+1[K)B(k|k)) B (k| KK (k+1|k)$ (k| k)

& (k| %)

+ T hxoar kellx )} o (k| x)

p(k|k)

- {(xk|k) + B (k]k)g(k+1]k)§(k|k))'1§' (k| k)R (k+1]k) & (k| k)

0:0 0 )[Rk
+ E_l(klk)é- (k+1|k)} g;nzg o_'(1'<'1'<) (3.4.2)
0:0 ! Izpklk

k=20,1,...,8-1

By definitions (2.3.6) and (2.3.7) Eg. (3.4.1) is immediately verified.

The adaptive control gain ¢'(k) is, by definition, independent
of the current estimate of the state vector gfklk). It depends on §1k1k)
and b(3[k), A(k|k) and a(3]%), I (x|k) and I (3], I, (k[k) and I, (3]k),
and gaa(klk) and gaa(jlk) evaluated along the open-loop feedback optimal
trajectory for k < j < N-1.

The control correction term uC(k) is independent of g}klk). It
depends on B(k|k) and £(j|k), &(k|k) and A(j|k), L, (k[k) and L (j]k)
2., k[k) and £ (3[k), L, (k|k) and L, Glk), and £, (x[k) and DINGTEY)

all evaluated along the open-loop feedback optimal control trajectory for
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k < § < N-1. If the cross error covariances I (k[k), (klk), and
- - =xb a

z
L
Qab(klk) are zero, then the adaptive control gain uc(k) = 0 in Eq. (3.4.1).

In Egs. (3.4.1) and (3.4.2) we have the explicit variation of
the adaptive gain as a function of the future expected uncertainty of the
parameters. The OLFO control correction term is affected by the estimation
accuracy of the a and b vector through gxa(-lk), gxb(-lk), gab(-lk), gaa(-lk),
and ;b (-Ik). We note that the uncertainty in the state vector x given by

gxx(-lk) does not affect the OLFO control calculation; and, hence; consistant
with the results of the standard Separation Theorem.

If I (k|k) = 0 and T__(k|k) = 0, then we have "identified" b
=bb - —aa - =

and a, that is, b(k|k)

b(k) and 3(k|k)

1l

E(k)' We also have then

L, klx) =0, ;_xa(klk) 0, and Z_, (x|k)

—ab
from Eq. (2.3.2) and Egs. (2.3.26)-(2.3.34) that if we define in this case

0. It can be shown by induction

—-11 —-12 . —13
- A AR R ERERERE
K(k[k) = |K, (k) DK, (k) Ko (k) (3.4.3)
K31(k) . K32(k) . 533(k)
then Ell(k) satisfies the matrix Riccati equation
— L] -
Ell(k) = é_(k)[§ql(k+l) 511(k+1)§fk)(r(k)

' -1 '
+ b (0K, (kbD)B(K)) b (K, (D) IAK) + Q(K),
K, M = o) (3.4.9)

The optimal open-loop feedback adaptive gain is then effectively

@) = -[x(0) + b (0K, (DB T b (K, | (k+DA(K)

(3.4.5)
*
¢ ' (k)
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which is the truly optimal gain for the linear-quadratic-Gaussian problem
given by the Separation Theorem [1l]. Under these assumptions, the adaptive
control correction term uc(k) = 0, and the stochastic optimal control is,
therefore,

1

W = -l + b Ky, (DB 1R (0K (DA R(K[K) (3.4.6)

The structure of the truly optimal stochastic control is given in Fig. 3.1.
Therefore, if at time k, the identification of the parameters gjk) and

b(k) has a very high level of confidence, (klk) = 0, and

i.e., Ebb

e

gaa(klk) 0, then the optimal open-loop feedback control will act nearly
optimal, and use the generated estimates é{klk) and §(k|k) as if they were

the correct parameter values.



CHAPTER 4

FURTHER PROPERTIES

4.1 Existence and Uniqueness of the O0.L.F.0. Solution

In obtaining the dynamic programming solution to the determi-
nistic open-loop control problem Eg. (3.2.1)-(3.2.6), the convexity

condition (3.3.13)

Zuu(ilk) > 0 (4.1.1)

where

z %) =]k + tr_Z_bb(iIk)g_xx(i+llk) + D' (i| WK (i+1]x)b (i k)
(4.1.2)
is required. If Zuu(ilk) < 0, then a bounded optimal solution does not
exist. Also, if Zuu(ilk) is singular, the optimal solution will not be
unique. If we assume that neither of the foregoing cases hold, then we

have the following theorem.

Theorem 4.1 (Uniqueness and Sufficiency):

If Zuu(ilk) >0; i=k,k+l,...,N-1

then the optimal open-loop control of the deterministic problem exists,
is unique, and is given by Eq. (3.3.23).

Proof: The proof follows directly from the derivation of the above

dynamic programming equations.

We shall use Egs. (3.3.24) and (3.3.5) to show the existence
and uniqueness of g}j]k), j = k,k+1,...,N-1; k = 0,1,...,N-1 in
Eq. (2.3.2). wWe will show by induction the following Lemma.
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Lerma 4.1.1:

r(3lk) + B' (3T RIRGG+L 1B
Proof: We have 2(N) > 0, r{j) > C
Using Eq. (2.3.34) we obtain

~

T(N-1]k) + B'(v-1l)®(ilx)B (-1

k)

ed trom S
ti‘:f o::ac'\\ab\e copyv. »

1,...,N-1

(4.1.3)

for all j. In particular, r(N-1)>

_ - N=1"'1 il E'(v-11x) S (N E (n-1!
= r(N-1) + trzbb(ﬂ 1 K)EXX(N|K) + B (N-11k)C(N) B (N-17k)

Assume

k) + b' @[RKE+LK0BE[K) > 0; 2

1

i,i+l,...,N
k,k+l,...,N

r(N-1) + trg  (N-1]k)Q(N0) + brv-1lx)gnb(n-1/k) > 0

(4.1.4)

1
l(4.1.5)

Let ;}j) =0, j =k,...,N-1. Then, by the induction hypothesis,

Eg. (3.3.24) and Eg. (3.3.5) imply that

~

39, ® G100, 3]k = 3 x|

i/k —
+
if we choose
’gbb(l-llk)
Ea-1l = |z, G-1lx
lgbb(l—l[k)

and since r(i-1l) > 0, we have then from Eqg.

N

L,

b(i—llk)gxx(i]k)]

I, -tk L (-1l

L (i-1lx) £, (i-1]k)

—aa —ab

I G-l E (i-1fk)
(3.3.24)

T(i-1[k) + B' (i-1|0K(i|K0b(i-1]k)

= r(i-1) + 23?

/

L (Bli-1]x), £ti-1[x)) > 0

Thus assertion in Eg. (4.1.3) is proved by induction.

B' (i-1]K)K(i|K)b(i-1]k) > 0O

(4.1.6)

(4.1.7)

(4.1.8)
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. o,. N-1
By Lemma 4.1.1, the optimal open-loop control {u (jlk)}j=k
exists and is unique for all k = 0,1,...,N-1, and, therefore, the open-

* -
loop feedback optimal control {u (k)}§=é exists and is unique.

4.2 Asymptotic Behavior

In this section we study the asymptotic properties of the

overall system by considering the behavior of (klk) and gaa(k]k) as

Lyp
k > o , We assume that the corresponding deterministic system of S1 is
completely controllable and completely observable. If the nonlinear
filter worked properly then the estimates given by the extended Kalman
filter would approach the actual values of the parameters, and the
observation noise would loose its effect on the estimates as time in-
creases. The filter gain in Eq. (2.3.12) would, therefore, decrease,
since the predictedAerror covariance is expected to go to zero if there
are no plant disturbances. However, since the filter is only an approxi-
mation to the optimal Bayesian filter, a bias error may occur. The
extended Kalman filter behaves as if this error d4id not exist. The
propagated error becomes smaller than the real errors. To tell the filter

that we have nonlinearities, we can introduce fictitious driving noises

into the augmented state equation, and hence, make use of all the measure-

ments.

Lemma 4.2.1: Let §jk) = 0, that is, there is no stochastic variation in

parameter vector E(k) and the g}k) vector is constant. Then, given any
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*
control sequence, the error covariance z%a is monotonically decreasing.

$  (k+l]k+l) < I (k[k) (4.2.1)
—aa — —aa

Proof: From Eg. (2.3.15)

S (k+l]lk+l) = I (x|k) - (0:1 :O}G(k+l) [T T (k+1|k)E"
—aa —aa - .- - =
4]
+ O(k+11G"' (k+1) I“ (4.2.2)
- = -
S

where G(k+1) is given by Eq. (2.3.12). The Lemma then follows immediately.
Intuitively, since
a(k+l) = af(k)
the uncertainty in a(k) cannot grow.
As a result of the Lemma 4.2.1, there exists then a gaa
such that

lim I (k]x) = I (4.2.3)
K-s00 —aa —aa

Lemma 4.2.2: For b(k+l) = b(k), given any control sequence we have from

Eq. (2.3.15)

<
gbb(k+1|k+1) < gbb(klk) (4.2.4)
Proof: The proof is similar to that for Lemma 4.2.1l. There exists then

a Ebb such that

lim I, (k]kX) = I (4.2.5)
Kk->00 —b —b

The matrix E.is said to be small than M if for all nonzero vectors, the
scalar quantity x'P x < x'Mx.
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In analogy with the detemministic case, we can thus say that
the parameters a and b are observable since the variance of the estimation
error of a and b can be decreased by operation on z.
It can be shown that if g(k) = 9, y_(k) = 2, and the system com-
pletely observable, then for any bounded but nonzero control u(k),

k =0,1,... [16], [29]

(4.2.6)

1
|o

lim __(k]|k)
Ko =aa

lim L, (k|k) (4.2.7)
k>

I
o

Since ;(klk) > 0, this result implies that lim gxb(klk) +,9.
— -

lim £ (k|k) > 0, and lim L_, (k|k)~> 0.
ko 0 ko O

Hence, we can design a reasonable controller for a completely

observable system with unknown parameters.

a(k+1l) a(k)

b(k+1) = b(k)

using an ad~hoc control law Z, (X(k|k), &(klk), Bklk), & (klkx), 7 _ (klk))
K — . — . — 1 —aa ] _DD |
for k > 0 given by (Fig. 4.1)

n _n__n
(1) Ck(i’i'g’éaa’gbb)' R xR xR anannn—> R

n n n
XER
XeR', a€R', beR, L €M ., L .eM

(2) g (x,2,0,2 ,Z,)#0, L, #0, L #0,%x#0

(3) (x,2,5,0,0) = ~(r(k) + b'K(k+1)b) "b'K(k+1)A x

Ck _____
Condition 2 satisfies Egs. (4.2.6) and (4.2.7) and Condition 3

implies that the ad-hoc control will converge to the optimal control when
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a and b become known. Hence, the ad-hoc control scheme for system with
unknown parameters can provide reasonable simulation results.

Let us now assume an observable system S1, where

a(k+l) = a(k), b(k+l) = b(k)
that is, the parameters are constant and not growing. We want to control
the system over a finite interval N. In the beginning when the uncertainty
in b(k) is large (gbb big) ;(jlk) is big the adaptive control gain ¢ (k)
is small for both the stable and unstable systems. The trajectory of the
overall control system then approximates that of the input-free trajectory
of system S1. The initial guess on b(k) is not changed since little control
input is applied. For the not exponentially stable system ¢ (k) ~ O at the
beginning. The low control magnitude nevertheless starts the identifi-
cation of a(k). It is expected that the resulting in stability of the
system will cause large inputs to be applied which results in the identi-
fication of b(k). The high control magnitude will be used mainly for
identification of the parameters. The control will be nonzero as long as
the identification process is not completed. We, therefore, expect that
for the unstable system, the estimate of b(k) will be identified before
the control magnitude goes to zero.

In the exponentially stable systems, we have nonzero control in
the beginning. Small control (even zero) may be utilized to bring the
state toward zero. Hence, little energy is needed to keep the trajectory
near zero, and identification of E}k) is expected to be slow. Identifica-
tion of a(k) is expected to be reasonable, since the entire output will
be due to mainly the product A(k)x(k), although as k > © the observation

approaches white noise. Hence, one may end up with good control but bad

~ S
\"
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estimates, since little control effort is spent for identification and
control purposes. We remark that the above interpretation of the derived
equations assumes that the nonlinear estimator is working satisfactorily,
that the deviations of the estimates from the actual values are not large.

Finally, we shall consider the problem of controlling the time-
invariant system S1 with unknown parameters over an infinite time period
(N > ), Assume that the system is controllable and observable, then the
window-shifting approach suggested in [16] can be employed. By Lemmas
4.2.1 and 4.2.2, (y(k) = 0 and Q(k) = 0) the estimates in a and b will
converge asymptotically and hence, the time-varying adaptive control

system tends to a time-invariant control system,

4.3 Enforced Separation Scheme

In this section we shall discuss the ad-hoc control design in
which the Separation Theorem is arbitrarily enforced. This controller is
a direct approximation of the stochastic optimal controller resulting from
Separation Theorem, which in the absence of uncertainty about the plant
parameters of Sl minimizes the cost functional

_ N-1

T o= zE MMM + [ x'(Ha@xG) + r@He’()} (4.3.1)
j=0

where the expectation is taken over the underlying random variables x(0),
é(-), and 9}-). The approximate minimization is based on the present
estimates of the system parameters §jk|k) and §(k|k). We assume the

parameter values to be known (gaa(.|k) = (-|k) = 0). Thus at each

Low
time step k, 0 < k < N we have the conditional cost given by Eq. (3.1.4)

to be minimized subject to the dynamics Egs. (3.2.1) - (3.2.4). Since



-60~
X ('Ik) is now independent of u(-), the equivalent functional minimiza-
—XX —_—

tion is given by
- 1 1Nt 2
3 = zRElomal + 3] 2 GI0ADRGK +r(u’() (4.3.2)
j=

The structure of the resulting control law has the form
u(klk) = -9¢k|k)&(k|k) (4.3.3)

where g}klk) is the optimal deterministic gain which arbitrarily uses

the current parameter estimates for the unknown system parameter values,

gk]K) = (r + 8" (k| ORI B k[ k) T IBK| 0K (k1] )R (K[ X) (4.3.4)
K(k|K) = A" (k|k) [K(k+1]K) - Kk+1]0)B(x[K) (r + B (kl)x (x+150)
Bk T (k0K (k+1]K) 1A (K| k) + Q(K)
k(Njk) = om) (4.3.5)

We shall denote this suboptimal open-loop feedback design the enforced
separation scheme. The control law is identical with the linear-quadratic-
Gaussian case with known parameters, except that the actual parameter
values of a(k) and b(k) are arbitrarily replaced by their updated esti-
mates. We shall use the extended Kalman filter to generate the estimates.
Optimality of the cascaded form feedback controller, thus, cannot be
claimed any more.

As in the open-loop feedback optimal design, the enforced
separation scheme controller is time-varying, because the feedback control
gains must be recomputed to make use of the updated estimates. At each
time step k a Riccati-type equation needs to be solved backwards in time,

since A(k|k) # &(k+1|k+1) and B(k|k) # B(k+1|k+1). The enforced separation
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scheme differs from the open-loop feedback optimal design, essentially, in
that the control does not depend explicitly on the goodness of the param-
eter estimation process. Since arbitrarily enforcing Separation Theorem
does not require the propagation of the error covariance matrices and
predictor equations of éﬁjlk) and §}j|k), the computational requirements
are that much simpler compared with the open-loop feedback approach. We
emphasize that both designs are suhoptimal closed-loop control systems.
In the limit as the parameter estimates converges to the time parameter
vectors a and b, from Eqg. (4.2.6), so will each suboptimal control policy
asymptotically approach the truly optimal solution when the actual

parameters are known.



CHAPTER 5

INTERPRETATION OF THE RESULTS

In this chapter we shall discuss further the O.L.F.O. approach
and the results on adaptive systems. The adaptive control problem we
stated in Section 2.1 and solved is one of optimal nonlinear stochastic
control. In the formulation of computationally feasible solution to the
optimal control problem, we have, in essence, forced separation in the
control action. The separation in the open-loop feedback approach yields
a suboptimum controller. Restricting the form to a reasonable closed-loop
stochastic control system of Fig. 2.1, the open-loop feedback optimal
control system can be viewed as a separation of the overall control system
into an estimator and a zero-memory controller. The first subsystem is
the learning device where the states and the parameters are identified in
real time and can be designed independently of the controller objectives.
The controller subsystem computes the on-line optimal control for a deter-
ministic system and is parameter adaptive.

The results we derived in Section 3.3 do not correspond to the
strict separation of optimum estimation and optimum deterministic control
as is in the case of uncertain linear systems with known parameters and
quadratic cost criteria. [6],[5] We expect that the Separation Theorem
does not hold in the adaptive control problem. The value of the optimal
open-loop feedback control depends on both the estimate (by examining the
adaptive control gain vector ¢'(k)) of the parameter and their error
covariance matrices. The effect of identification error is, therefore,

taken into account in the deterministic control problem we have formulated

-62-
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and solved. The design bears the adaptive properties and violates the
pure Separation Theorem.
The system Sl contains an input signal u(k),k = 0,1,...,N-1.
It is expected that the choice of this input will affect how well the
system identification can be performed. Let &(k),8(k),y(k) = 0, then

we obtain for the time-invariant system

k .
x(k+]) = 2% x(0) + § a* b u (i) (5.1)
i=0
k+1 X k-1
z(k+l) = CA* ~x(0) + Cb ) A" “u(i) + §(k+l) (5.2)
i=0
For example, if x(0) = 0, then a nonzero u(k) is required for

the system to identify the parameters. From Eq. (2.1.1), it is obvious
that the larger the control input u(k), the larger the contribution to
the state trajectory at x(k+1). This implies that the observation will
contain a 1ar§e amount of information about the gain parameter b(k).
Large values of control input will, therefore, help in the identification
of b(k). The control signal can also be used to regulate the signal-to-
noise ratio at the sensor. But, large input is discouraged in our qua-
ratic control-penalty term in the cost functional. Therefore, the dual
nature of the control input is clearly emphasized in our formulation.
A reasonable adaptive control sequence must then be a compromise between
the desire to get accurate estimates and the desire to minimize the cost.
Let us consider further the open-loop feedback optimal solution.
The original state weighting matrix was Q(j), and the original control

weighting was r(j). The effect of the parameter uncertainties in the
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open-loop feedback optimal control problem is to transform it, heuris-
tically speaking, to a linear quadratic tracking problem with modified

weightings, where uo(jlk) is the optimal control for the following control

system [37]
X(3+1]x) = AT RRG[X) + B[R ui|k) (5.3)
%(3]%)
T R
x(ilx) = la(3]w (5.4)
01
with the cost functional
N-1 2
J = xN[KIMEM|k) + ) {X'GRWE[RRG] K + TG RG]k
j=k
+ 2%' (3|Xd(5+1] K u(i]| k) } (5.5)

Comparing this problem with the original linear quadratic state-regulator
problem, we can call z(jlk) the modified relative weighting on the control.
We remark that the scalar weighting }(j|k) in Eq. (2.3.34) is
related directly to the conditional error covariance gbb(jlk). The
moditied relative weighting on the control %(jik) indicates that a low
level of confidence in the estimate of the gain parameter E}j[k) or that
gbb(jlk) is big will weight the control heavily in Eq. (5.5) so that
little energy will be expended. Hence, the more the gain parameter un-
certainty (now and in the future) the larger E(jlk), which implies the
smaller the value of the adaptive gain ¢ (k) in Eq. (2.3.6). The control
gain is, therefore, adjusted by the level of uncertainty of the estimation
of b(k). We note that the parameter uncertainty Ebb(jlk) is modified by

the matrix gxx(j+1|k) in the computation of ¥(j|k) in Eg. (2.3.34).
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In Bq. (2.3.33) if ||A(5]k)|| < 1, then ngx(jlk)llz 19 (3]
for j > k. If, however, ||§jj]k)||> 1, then !IBXX(jIk)||>> llgfj)lL and,
thus there is much more contribution from the trace term to the value of
T(jlk) in Eq. (2.3.34). We remark that at the same level of parameter
uncertainty, the more unstable the system, the larger Exx(j’k)’ and hence
the larger the value of the }(jlk). The result is the smaller the adaptive
control gain ¢ (k) at the initial stages the more the system model is un-
stable.

In the discussion thus far we have not examined the effect of
uncertainty in a(k) (gaa(klk) # 0). Recall that from Egs. (2.3.1)-(2.3.3),
{(2.3.31)-(2.3.32) the computation of the 0.L.F.O. adaptive control is
affected not only by zbb(jlk), but also by gaa(jlk). The original state
weighting matrix Q(j) is modified in Eq. (2.3.31). If the system is
asymptotically stable, then llg(j)|]+ Ilpnnﬁ+1|k)§ﬁa(j|k)” = Ilg(j)H-

The state weighting matrix is not affected by the uncertainty in a(k).

Hence, the O0.L.F.0. will be cautious in applying the control to the

system in the beginning due to uncertainty in b. Intuitively, this is
reasonable, since the system is stable, and will decay to zero asymptotically.
If the system is not asymptotically stable, then the state weighting matrix

is modified by [[ o) I+ [l G+1baz_ Gl >> [le@ (I, The net

effect is that the O0.L.F.0. will act with large control magnitudes to regulate
the system. This is not easily seen heuristically from the equations.

The interaction between the uncertainty in b(k) and a(k) is not completely
predictable from the equations (2.3.31)-(2.3.32), (2.3.2) for the adaptive

gain, since gxx(j+1|k) is observation dependent.
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Finally, we want to discuss the optimization of the (deterministic)
conditional cost functional (3.1.4). The open-loop covariance matrix
should be a function of the conditional probability density functions.
The reformulation would have been exact. Since A(k) is unknown, the
estimation problem is an infinite dimensional one. We are forced by
computational limitation to approximate the conditional expectations
g(klk) and gjjlk) and §xx(k|k) and Exx(jlk) using the extended Kalman
filter. The optimal open-loop control sequence we have derived in
Chapter 3 is at best an approximation to the‘optimal conditional open-
loop control law. If A(k) is known, then the exact conditional means
and error covariances can be generated by the optimal linear filter [16].
Hence, in the absence of rigorous analytical results on the goodness of
the approximation we have developed, we shall turn to simulation exper-
iments to provide further clues to the adaptive control problem under

consideration.



CHAPTER 6

SIMULATION RESULTS

We have derived the open-loop feedback optimal control sequence
in Chapter 3 via dynamic programming for the problem stated in Section 2.1.
Based on the equations (2.3.8)-(2.3.16) for the identifier and Egs. (2.3.5)-
(2.3.7) for the feedback gain plus correction term controller we discussed
qualitatively the asymptotic behavior of the identifier in Chapter 4 and
of the overall control system in Chapter 5. In this chapter we shall
report the results of simulated experimentation made on some dynamical
systems. The main purpose of the simulation studies is to verify the
gualitative properties that we predicted and to provide the guantitative
measures on the convergence rate of both the 0.L.F.0. control and the
enforced separation schemes to the truly optimal stochastic control when
the parameters are known. The simulation studies will compare the per-
formance measure of (1) the truly optimal stochastic control system when
the full dynamics are known, (2) the O0.L.F.0. adaptive control system,
and (3) the enforced separation scheme.
We shall consider specifically the first-order linear dynamical
system described by the stochastic difference equation
x(k+1l) = ax(k) + bu(k) + & (k) (6.1)
with noisy measurements given by
z(k) = cx{k) + 0(k) (6.2)
We assume that the unknown parameters are constant.
The initial values x(0), a(0), and b(0) are assumed to be
Gaussian random variables with known statistics

-67~-
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E{x(©0)} = X cov[x(0),x(0)] = zxo (6.3)
E{a(0)} = I cov(a(0),a(0)] = I__ (6.4)
E{b(0)} = bo ’ cov[b(0),b(0)] = Zbo (6.5)

where I , I , and Zbo are positive semidefinite. The scalar zero-mean
X0 ao

white Gaussian driving noise sequence has the known statistics
E{g(x)} = 0, cov[E (3),E(k)] = E(k)ij (6.6)

and the scalar zero-mean white Gaussian observation noise has the known

statistics

E{6(k)} = 0, cov[B(3),B(k)] = G)(k)djk (6.7)

where E(+) > 0 and ©(-) > 0. The random variables {x(0),a(0),b(0),E(-),
8(-)} are mutually independent.
The objective of the problem is to find an optimal control
sequence such that the expected cost functional
N-1

Feoezamm+ 3 T am 2 m+ rmoud o) (6.8)
=

k

is minimized based on some information set.

We can now apply the theoretical results of the open-loop feedback
optimal control obtained in Chapters 2 and 3 to Egs. (6.1)-(6.8). A
digital computer program was written, in which the identification
equations (2.3.8)-(2.3.16), and the O.L.F.0. parameters equations (2.3.17)-
(2.3.19), (2.3.23)-(2.3.25), (2.3.27)-(2.3.34), and adaptive control
equations (2.3.1)-(2.3.2) are programmed as individual subroutines. The

computer program listing is contained in Appendix B. In the computer

program, if we let a_=a, b =b, and I =Z = 0, then the simulation
o o ao bo
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results would correspond to 1) the optimal closed-loop stochastic control
for the system defined by Egs. (6.1)-(6.8) with known parameters. If we
now at each time step k assume that Zaa(k|k) = be(klk) = 0, and use the
instantaneous estimates a(k|k) and B(klk) of parameters a(k) and b(k) to
compute the suboptimal feedback control, Egs. (3.4.4)-(3.4.6) the simu-
lation results in this case would correspond to the system 3) in which
the Separation Theorem is arbitrarily enforced. Hence, the algorithm we
have is a general stochastic control simulation program that readily
accomodates changes in the simulation model and initial conditions, and
can be trivially modified for n-dimensional systems.

Using a plotting subroutine, we then plotted for a series of
sample runs the resulting trajectory for 1) the stochastic control system
with known parameters (where Separation Theorem holds), 2) the open-loop
feedback optimal control and 3) the enforced separation scheme; the
changes in the estimates ;(klk) and B(klk) in the open-loop feedback
optimal and in the enforced separation schemes; the changes in the optimal
feedback gain ¢*(k), the adaptive gain ¢(k), and the ad-hoc gain, and
lastly, the applied control sequence in the three different stochastic
control systems. In each sample run, to evaluate the cost functional for
the three separate stochastic control systems, we computed the quadratic
terms in x(k) and u(k), and these are alsc plotted versus k.

We note that we do not present here a comparison between the
suboptimal control schemes and the true closed-loop stochastic control
for systems with unknown éarameters. The latter can be obtained only if
we are able to compute the discrete probability distributions. The

comparison of the system responses reported here will only indicate the

W
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Table 6.1

Summary of the Monte Carlo Simulation (Sampling)

Sample size = 20, ¢ =1, b

=1, x
' To

= 0,

L. =3 E£=0.04° =1

Simulation a Zao Zbo 0 a Table
Ul 1.2 0.0049 0.25 1.0 10 c.1
U2 1.2 0.0009 0.25 1.0 10 c.2
U3 1.2 0.0009 0.25 1.0 2 c.3
U4 1.2 0.0049 0.25 1.0 2 c.4
U5 1.2 0.0009% 0.25 4.0 10 c.5
ueé 1.2 0.0009 0.25 9.0 10 C.6
u7 1.2 0.0049 0.0 1.0 10 c.7
us 1.2 0.0 0.25 1.0 10 Cc.8
sl° 0.8 0.0049 0.25 1.0 10 Cc.9
S2 0.8 0.0049 0.25 4.0 10 C.10
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loss in performance from the control viewpoint when simultaneous parameter
identification is necessary. By examining these simulated time responses,
we can obtain clues to the interaction between identification and control
in an actual system. By evaluating the cost functional for the resulting
trajectory and control sequence, we can numerically compare the perform-
ance of the open-loop feedback optimal design with the enforced separation
design (in the closed-loop sense).

Since only first-order systems will be considered, the most
number of unknowns we can have 1s three (x, a, and b). The uncertainty
in b corresponds to uncertainty in the plant d. c. gain, while the
uncertainty in a corresponds to uncertainty in the plant time constant.
Not knowing a exactly is equivalent to not knowing the pole location
of the system function. The only information about the system comes
from the observation of the state trajectory obtained in the presence of
a random disturbance. For each control system design, we used the same
sample randoﬁ sequence in the simulation via the Monte Carlo method,
which required the establishment of statistical population for the
uncertain quantities, repetitive calculation of performance using random
samples from these populations, and averaging over the ensemble of
results. We repeat (consecutively) the entire simulation run 20 times
with the same initial conditions. A summary of the simulation experi-
ments is given in Table 6.1. The comparison for the expected costs
using controls 1), 2), and 3) is given in Appendix C.

The simulation results of Ul using the crude Monte Carlo method
are shown in Figs. 6.1 -6.5. We assume that the a priori distribution

of a(0) is given by



-72-

a(0) ~ N[1.2, 0.0049]
From the plot of state trajectories in Fig. 6.1, we see that the open-
loop feedback optimal trajectory has an overshoot at k = 1 due to the
large control u(0). The large control magnitude is used for identifi-
cation and control purposes. The average of the parameter estimates
ﬁ(klk) and B(klk) are shown in Figs. 6.2-6.3. They approach nearly the
initial mean values. The identification of b was better using the
0.L.F.0. control than the enforced separation scheme. In the plot of
the feedback gains, Fig. 6.4 we have the experimental result that the
open-loop feedback initial adaptive gains are nonzero and, surprisingly,
large compared to the truly optimal feedback gain. The open-loop feed-
back optimal control sequence proved to be more "aggressive" on the
average than the enforced separation design as seen from Fig. 6.5. Both
the open-loop feedback optimal and the enforced separation control sequence
were able to stabilize the system, although the identification was not
exact. Not shown here is the 0.L.F.0. correction term which does go to
zero as k - N in all the simulation runs.

In Figs. 6.6 -6.7 we plot the quadratic terms in x(k) and u(k)
vs. k averaged over 20 sample runs. They indicate the large contribution
to the O0.L.F.0. average cost occurs at k = 1. A detailed examination of
the computer data also showed that the sample variance of the cost is
huge, thus implying that possibly a small number of statistically bad
runs contributed to making the sample mean large. The detailed com-

putations of the sample run costs and cumulative average costs are given

in Table C.1.
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14
1.2 o
! TRULY OPTIMAL STATE TRAJECTORY
1ok ‘ — . —.— O.LF.O. STATE TRAJECTORY
-l ........ ENFORCED SEPARATION STATE TRAJECTORY

Fig. 6.1 Comparison of the average resEonse of the unstable systems Ul
when the parameters a(k? and b(k) are known (optimal stochastic
control) and when the parameters are unknown (O.L.F.O. method

and enforced separation scheme). The sample noise sequence was
the same. Sample size = 20.
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Optimal Feedback Gain (when the parameters are
known) and the two Suboptimal Feedback Gains
(when the parameters are unknown) for the
Unstable Systems Ul
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Fig. 6.4 Comparison between the Average Behavior of the
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——— —— TRULY OPTIMAL CLOSED-LOOP CONTROL

— o .o O.L.F.O. CONTROL

-------- ENFORCED SEPARATION CONTROL

Fig. 6.5

20 30

Comparison between the Average Behavior of the
Optimal Stochastic Control (when the parameters
are known) and the two Suboptimal Stochastic
Controls (when the parameters are unknown) for
the Unstable Systems Ul
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Fig. 6.6 Comparison of the Average Behavior of x2(k)
for the Unstable Systems Ul
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Fig. 6.7 Comparison of the Average Behavior of u2(k)
for the Unstable Systems Ul
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In simulation run U2 the initial uncertainty in ao was reduced
(an = 0.07 in Ul and an = 0.03 in U2). When zao = 0, the estimation
problem becomes linear, so decreasing zao would tend to reduce the non-
linearity in the system. Simulation results showed that the identifier
and the controller exhibited similar average behavior in all three cases
as in Ul. The open-loop feedback control gains and controls are a little
larger than they were in Ul. This tells us to look at the effect of
Zaa(jlk) in Eq. (2.3.31). The initial overshoot in x(k) is also little
larger as a result.

Since the open-loop feedback optimal controller seemed too
anxious to reduce the covariance in x, we ran simulations U3 and U4 with
state weightings decreased to 2. The only noticeable effect is that the
control magnitudes are smaller on the average than in U2 and Ul. The
average costs for the open-loop feedback optimal control remained greater
than the enforced separation scheme.

By using Eq. (6.8) to evaluate the average costs, we are then
comparing the open-loop feedback optimal and the enforced separation
scheme in terms of performance index in the optimal closed-loop sense.
Hence, in experiments U5 and U6 the measurement noise covariance was
increased to 4 and then 9. We know that the open-loop feedback optimal
design optimalizes the open-loop cost functional in the open-loop feed-
back sense. By increasing the measurement uncertainty, the estimation
process would tend to ignore the data in the beginning and rely on the
predicted observation. The system will then act more according to its
average behavior (ignoring the zero-mean random processes) and, hence,

more inthe open-loop sense. We expect that the controls are not going
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to be good when the noise covariances become large. This is seen from
the larger costs incurred in U5 and U6 as compared to U2.

In simulation U5, the controller is more cautious on the average.
The initial control is smaller than it was in U2,but takes on bigger
values at k = 2 and k = 3 as the controller notices the divergence
phenomenon in the state x(k). The rate of convergence of the estimates
was slowerin this system. As O was increased to 9, the initial measure-
ments are used with even less confidence. The system does not respond
to the divergence phenomenon until later, and thus, the initial large
overshoots due to large control magnitudes are removed. The trajectory
in x(k) showed instability in the beginning and larger variations than
previous simulation runs. The biggest control occurred at k = 3, which
produced the largest deviation in x at k = 4.

The simulation plots of S1 for stable systems using the crude
Monte Carlo method are given in Figs. 6.8 -6.12. We assume that the a
priori distribution for a(0) is

a(0) ~ N[0.8, 0.0049]

From Fig. 6.8, we see that the state trajectory x(k) is essentially
input-free. The initial open-loop feedback optimal control is nonzero,
but small as expected since the modified control weighting Eqg. (2.3.34)
is large due to the initial uncertainty in bo. The systems are asymp-
totically stable, hence, the control magnitudes are kept small. The
estimates of parameters a and b are further off from the true values
than in the unstable systems. But, the suboptimal controls do converge

very fast to the truly optimal control. Again, the exact identification
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6.8 Comparison of the average response of the stable systems S |
when the parameters a(k? and E(k) are known (optimal stochastic
control) and when the parameters are unknown (O.L.F.O. method
and enforced separation scheme). The sample noise sequence

was the same. Sample size = 20.
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Fig. 6.10 Average Behavior of the Estimate of b(k)
for the Stable Systems Sl
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Fig. 6.12 Comparison between the Average Behavior of the

Optimal Stochastic Control (When the parameters
are known) and the two Suboptimal Stochastic
Controls (When the parameters are unknown) for
the Stable Systems S|
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Fig. 6.13 Comparison of the Average Behavior of xz(k)
for the Stable Systems Sl
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Fig. 6.14 Comparison of the Average Behavior of u2(k)
for the Stable Systems SI
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of the unknown parameters is not necessary for good control. The averaged
estimates in Figs. 6.9 -6.10 are not good, since small magnitude input
sequence is used, and, thus, little identification is accomplished.
In Figs. 6.13 -6.14, the quadratic terms in x(k) and u(k) are plotted.
The greater part of the open-loop costs comes from the initial state
deviations and large controls at the beginning.

By increasing the measurement noise covariance in S1 from 1.0 to
4.0, the aggregate and average costs increased for all three control
strategies. The system was made to act more open-loop, as little
confidence is placed on the initial data. The average behavior of the iden-
tifier and the controller was not changed greatly since the systems
are asymptotically stable. From simulations S1 and S2, we have a com-
parisons of the average costs. The results show that O.L.F.0. control
incurred a little smaller cost than the enforced sepafation scheme.

Finally, in Figs. 6.15-6.19 we present a set of single run
plots for an unstable system and in Figs. 6.20 -6.24 plots for a typical

stable system.
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TRULY OPTIMAL STATE TRAJECTORY

O.L.F.O. STATE TRAJECTORY

ENFORCED SEPARATION STATE TRAJECTORY

when the parameters a(k) and b(k) are known (optimal
stochastic control) and when the parameters are unknown
(O.L.F.O. method and enforced separation scheme)
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Fig. 6.15 Comparison of the typical response of the unstable system
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(When the parameters are known) and the two
Suboptimal Feedback Gains (When the parameters
are unknown) for an Unstable System
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Fig. 6.20 Comparison of the typical response of the stable system
when the parameters a(k) and b(k) are known (optimal

stochastic control) and when the parameters are unknown
(O.L.F.O. method and enforced separation scheme)
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CHAPTER 7

DISCUSSION

In Chapter 6 we described the digital computer simulation results
in detail. In this Chapter we will interpret the results in light of the
qualitative properties discussed in Chapters 4 and 5. From the simulations
we found that nonzero control were applied at the beginning in both the
stable and unstable systems using the open-~loop feedback approach. The
control input is used for identification and control purposes. This high-
gain nature of the adaptive control is the response of the open-loop feed-
back approach to systems with more unknown parameters.

The rate of convergence seems to be dependent upon the stability
of the system. The more unstable the system, the faster the estimates
tend to the true parameter values. Further, the rate of convergence also
depends on the initial guess §10|0) and‘é(ok)), more true in the case of
stable systems than the unstable systems. The initial guess on b(k) and
a(k) hence affect the OLFO trajectory of the stable systems more than the
unstable systems.

Large controls help in the identification of the unknown param-
eters. From Egs. (2.3.15) and (2.3.31) - (2.3.33), we note that the larger
the control u*(k), the faster gaa(klk) and zbb(k]k) decrease. The
estimates §jk[k) and §jklk) of the parameter vectors iﬁk) and b(k)
themselves will depend on the particular control law from Egs. (2.3.8) -
(2.3.14), since the recursive filter contains u* (k) as a parameter. This
is verified by the simulation results. Conversely, the goodness of the
estimates %(k|k), &(k|k), and b(k|k) will affect the control law

actually used.
-94-
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For both the unstable and stable systems we remark that exact
_identification of Eﬁk) and ij) is not necessary from the control view-
point. This was shown experimentally to be more so in the case of stable
systems. Simulation results showed that the open-loop feedback optimal
control systems can work well even if the parameter estimates are bad.
The use of feedback also reduces the effect of parameter variations or
the system's sensitivity to parameter inaccuracy. We recall that our
objective functional rewards the system for good control performance, but
not for good estimation of parameters.

Simulation results via Monte Carlo method compare the average
cost incurred from combined identification and control, using, first, the
open-loop feedback technique and, second, the enforced separation scheme.
Since the sample size is arbitrarily chosen, we cannot make any precise
conclusions. From statistical theory, we can say with probability 0.99
for sample size 20 independent of distributions that 7/10 of the values
will fall in the range of the sample. The experimental results seem to
indicate that in the stable systems, the open-loop feedback optimal
method on the average incurred a smaller performance index than the ad-
hoc scheme. For unstable systems, the results seem to indicate that the
enforced separation scheme will incur smaller average cost in doing the
job than the open-loop feedback optimal control design. This imbalance
seems to originate in the large control magnitude that the open-loop
feedback optimal technique uses to probe the parameters and stabilize the
system in the beginning.

Finally, we shall discuss the computation feasibility of the OLFO

control algorithm in real time. In the estimator Egs. (2.3.8) - (2.3.16) at
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each time step k, k=0,1,...,N-1, we solve forward in time a l-step 3n
vector difference equation to generate the current state and parameter
estimates, and a l-step 3nx3n matrix difference equation to propagate
the covariance matrices, which must be computed on-line since they de-
pend on the measurements. Next we compute the parameters ij]k),
atGln, vGl, aGlx, 8|k, and ¥(3]k) which involve some l-step
computations, Egs. (2.3.27) - (2.3.32) and solve forward in time two
(N-k) -steps n-vector difference equations (2.3.18) - (2.3.19), three
(N-k) ~steps nxn matrix difference equations (2.3.23) - (2.3.25), and
lastly both a (2n+l)nx(2n+l)n matrix difference equation (2.3.2) and a
matrix difference equation (2.3.33) which will have to be computed on-
line backward in (N-k) steps. The 0.L.F.0. control is then obtained
from Egs. (2.3.1) and (2.3.4) using Egs. (2.3.26) - (2.3.27). Fof the
scalar system we have simulated and reported in Chapter 6, the actual
computation of the O0.L.F.O. control sequence for N=30 was about 0.06 sec-
ond. The digital computer used was IBM 370/155. The total storage re-

(klk) and

AR

>

quirement corresponds to storing on-line i(k!k), i(k!kL

jt

(k%)

3n+l

which require a total of (3n+( >

)3n) memory locations, since E(k]k)
is symmetric. We conclude that the O.L.F.0O. control algorithm is re-
cursive and computationally easy to implement.

The computational requirement of the enforced separation
scheme will be less. Since we assume that at each time step, the
parameter values are exact, there is no need to propagate the error
covariance matrices .associated with the unknown parameters. This trans-
lates into a saving both in memory and execution time for on-line adap-

tive control implementation.



CHAPTER 8

CONCLUSIONS

We have considered in detail both analytically and experimentally,
the problem of controlling a discrete linear system S1, subject to stochas-
tic disturbances, on the basis of noisy measurements. In addition, the
system has a number of unknown parameters which may also vary in a stochas-
tic manner. We assumed that the structure of the dynamical system is
known. 2All of the underlying uncertaln quantities are modeled as random
variables with known statistics. It is assumed that the controller has
perfect recall. The aim is to control the system such that the expected
value of a quadratic cost functional of the state and control is minimized.
Since the truly optimal closed-loop adaptive control solution given by
Bellman's equation cannot be easily implemented because of the "curse of
dimensionality", we sought to use suboptimal but simple and computationally
feasible adaptive control algorithms.

The results of previous work on the control of a linear discrete-
time stochastic system with unknown and stochastically varying control
gains by Tse and Athans [16],[29] are extended to a larger class of prob-
lems where the poles are also unknown. We have investigated this class of
problems in great detail, both from a theoretical and a simulation point
of view. We adopted the open-loop feedback control philosophy, technigues,
and theory in considering this broader class of problems. The O.L.F.O. ap-
proach led to afeedbgck controller design that has the desired adaptive

properties. The analytical results showed that the gains of the O.L.F.O.

-97-
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. adaptive control system were "modulated" by the current and future
uncertainty (error covariance matrices) of the parameter estimation.
Therefore, the standard Separation Theorem did not hold in this class
of problems.

The 0.L.F.0. control system consists of an identifier and a
feedback gain plus correction term controller. Since this adaptive
control problem involves nonlinear estimation, the exact solution can-
not be realized by a finite dimensional system. Thus, we used a non-

linear extended Kalman filter to generate the approximate conditional

means and the associated error covariances of the state and unknown
parameters based on noisy data. The identification technique has to be
on-line. It was shown that the identifier can be designed apart from
control purposes. We have, therefore, in the O.L.F.0O. approach fofced
some kind of a one-way separation [71,([42], although the identification
and control aspects of the problem are not necessarily independent.

Any interaction between identification and control is explicitly ex-
hibited in the form of constraints imposed by the identification technique
on the optimal control problem.

From the equations we derived, qualitative properties of the
overall O.L.F.0. control system were discussed. The derived theoretical
results are in a form that can be easily programmed on a digital computer
for on-line applications. Simulation studies on some constant first-
order dynamic systems were made to obtain some quantitative measures on

the convergence and the aggregate performance characteristics of the

overall O.L.F.O. control system. It was found experimentally that the
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~average behavior of the adaptive control system was drastically different
for stable and unstable systems. For the unstable system, the O.L.F.O.
control converged greater to the true stochastic optimal closed-loop
system than the stable system. However, excellent control can result
even if the identification algorithm did not identify the parameters ac-
curately. In optimizing control systems, the goodness of identification
is not rewarded.

In Chapter 4 we also developed a second approximation to the
optimal closed-loop solution in the form of a cascade of the extended
Kalman filter with a deterministic actuator. This arbitrary use of the
Separation Theorem led to a feedback controller that performed on the
average little inferior than the O.L.F.0. control for the stable systems,
but was much superior than the O0.L.F.0. control for the unstable systems.
The performance comparison was based on the evaluation of the original
cost functional provided by the Monte Carlo technique for lack of analyt-
ical tools. The O.L.F.O. adaptive control system was found to be some-
what high gain. The evaluation of the cost functional also provided
some quantitative measures on the loss in performance due to identifica-
tion and control when compared with the truly optimal control system. It
must be stressed that simulation is inherently an imprecise technique and
can only provide numerical data about the performance of the system, and
is useful for lack of more satisfactory techniques of analysis.

In the following we discuss some possible extensions of the

research related to the class of problems we considered.
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(3A) Different Cost Criteria

We have considered only the quadratic cost criteria. 1In our
reformulation of the stochastic control problem into a deterministic
control problem, the quadratic criteria is preserved, and we can thus
derive explicit results. Theoretically, we can extend the O.L.F.O.
approach to the more general case where the cost criteria is not neces-
sarily quadratic, e.g., exponential. The identification equations will
remain unchanged, but the open-loop control problem to be formulated
will be different from Egs. (3.2.1) - (3.2.6).

We note that in general the performance indexes used specified
the cost of the system operation in terms of error and energy, but do
not give us information about the transient-response characteristics
of the system. Therefore, to assure satisfactory transient character-
istics, we need secondary criteria relating to response characteristics

in order to influence the choice of cost weighting elements.

(B) Vector Control

The O.L.F.0. approach can be directly extended to gjk)€RF
and B(k) is a nxr input gain matrix. First, the identifier equations
need to be derived which will generate the current estimate of the state
and unknown matrices A(k) and B(k) and their associate error covariance
matrices. An open-loop control problem can be formulated and solved as
in Chapters 2 and 3. The results should be similar to those we derived,

but the equations will be more complicated.
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(C) Convergence Rate

We have not analyzed in detail the convergence rate of the sub-
optimal O.L.F.0. control system to the optimal system. We have turned
to simulation results to provide the basis for quantitative estimates
about the convergence rate for stable and unstable systems. An error
bound for the identifier and the controller would prove necessary to
analyze and compare the expected value of the cost functional incurred
by using the open-loop feedback optimal versus the enforced separation

scheme.

(D) Control with Unknown Parameters and

Imperfectly Known Distrubances

We have the matrices A(k) and b(k), k = 0,1,... partially known
but satisfying some difference equations. The noise vectors g (k), 6(k),
ﬁ(k), and‘l(k); k = 0,1,... are independent Gaussian vectors with unknown
means and / or covariances. It is necessary then to perform adaptive

filtering to recover the true means and covariances of the noise processes.

(E) Second-Order Filter

Since the identifier can be designed independently of the feed-
back controller, we can use the second-order filter to generate the
approximate conditional estimates and covariance matrices. The second-
order filter will in general remove the bias error contained in the
extended Kalman filter due to multiplicative effects of nonlinearities in

the plant equation and in the level of the driving noise.



APPENDIX A

FORMULATION OF THE OPEN-LOOP CONTROL PROBLEM

In this appendix we shall derive the dynamic equations satis-
fied by %jjlk) and Exx(j|k). We will then have completed the formu-
lation of a deterministic optimal control problem from the stochastic
control problem with unknown parameters. We index the present time by
k. Since all the noise sequences are assumed to be white and uncorre-

lated, then for izk.
e{€(j)]z,}=0, E {8(J) |z, }=0, £{y (5) Izk}=_0_ (A.1)

The future control sequence is restricted to be deterministic and we
assumed that there are no more observations, Egs. (A.l) and (2.1.)
imply that for j> k prediction beyond time k:

x(3+1|k) = A@a(i |k RG] R +b (3 [k u () (a.2)

where the parameters are constant

a(3+1]x) = a2l (A.3)

b(i+1lk) = B3|k (A.4)

with the initial values defined at j=k, X(k|k), a(k|k), b(k|k) which
is to be obtained from the extended Kalman filter for the nonlinear
augmented system S2., Since it is assumed that the control sequence
U*(O,k-l) has been applied to the system, the parameters in Eq.

(2.2.10) are known.

-102-
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The error vectors for j>k are given by
gx(j+1|k)=_Si(é(jlk))g_(j|k)+§(j|k)u(j)-_li(j)i(j)—g(j)u(j)—g(j) (A.5)

To the first order approximation we can write (A.5) using Eg. (2.2.1)

(2.2.7)
e, *1= RGEGIe, Gl0+RE G GlRGe, GIR-EG) (A.6)

where

(3+1[x) (ilx) - 8(3) (A.7)

e e
—a —a

g, (31K = ¢ GlK) - Y() (A.8)

The initial error at time j = k depends, however, only on
{€(1),8(1),y(i), i< k-1} and {6(i), i < k}, but not on {£(i),8(1),
l(i),_i_i k}. Assuming all the noise sequences to be zero-mean,
Gaussian, white, and uncorrelated with Zk-l for j > k, the noise co-

variances are

ElEHE () |z} = EG) (A.9)
{818 ]z} = A (A.10)
ely()y' lz,} =TH) (A.11)

Since the initial error and the future noise sequence are independent,

from Eq. (A.6)-A.1ll) and Eq. (2.2.8) we have for j>k
L+1x = FEGI0IGIR0E Glx + E () (a.12)

where Eﬁj|k) and -i(j) are defined in Egs. (3.2.5) - (3.2.6). The initial

conditions are those given at j = k.
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We should note that %ﬁklk), éﬁklk) and g(klk) are the approximate

conditional means of x(k),a(k), and b(k) respectively, while Z(k]k)

is the approximate conditional error covariance of the augmented state

% (k|k)
vector é(klk) . These approximate conditional estimates and error

b(k|x)

covariances are generated by the extended Kalman filter (171, [20]
given the past control U*(O,k—l) has been chosen. The identification
equations represent an optimum first-order estimator for the augmented
states system S2, and are summarized in Egs. (2.3.8)- (2.3.16).

Assuming that the state and parameter estimates and their
associated error covariances are known along with the past control se-
quence, we can then formulate a entirely deterministic (open-loop)
control problem at time k, k=0,1,..., N-1l. We have then the deter-

ministic dynamic system given by Egs. (A.2)- (A.4) and (A.12).



APPENDIX B

FORTRAN SOURCE PROGRAM LISTING

The entire computer simulation program is included for the sake
of completeness. It consists of the FORTRAN language routines (modules)
-— MAIN, PLOT1, GNOISE, RAND, PJ, OLFO, PARAM, ESTIM, GRAPH, and STAT.
Each routine is documented with a descriptive preamble.

The compiler used is FORTRAN IV G LEVEL 20 of the M.I.T.

Information Processing Center.
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APPENDIX C

MONTE CARLO SIMULATION TABLES

JOLFO = performance index using the open-loop feedback

optimal approach

JSEP = performance index using the enforced separation scheme
JOLFO = cumulative average of JOLFO

JSEP = cumulative average of JSEP'

JOPT = performance index using the truly optimal stochastic

control
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Table C.1

Monte Carlo Simulation Ul

Run - _
No. 20O b (0) x(0)  Jorro Isep Jorro  JsEp Jopr

1 1.212 0.725 -0.973 67.246 30.144 67.25 30.14 56.265
2 1.245 0.784 -1.426 119.567 93.316 93.4 61.73 73.966
3 1.197 1.762 -3.539 679.93 165.84 288.91 96.43 174.181
4 1.208 1.694 -0.581 425.476 161.465 323.05 112.69 100.537
5 1.271 0.724 -1.227 157.568 64.105 289.95 102.97 63.176
6 1.257 0.734 -0.839 146.208 107.446 265.99 103.72 80.342
7 1.213 0.886 1.680 86.562 64.747 240.36 98.15 58.763
8 1.221 1.561 0.348 131.404 80.022 226.74 95.89 67.055
9 1.243 1.708 0.540 404.466 262.9 246.49 114.44 215.156
10 1.169 1.106 -1.218 170.405 91.891 238.88 112.19 94.885
11 1.269 0.518 0.097 318.554 336.31 246.12 132.56 233.382
12 1.298 1.266 0.187 143.63 64.425 237.58 126.88 42,202
13 1.202 0.200 -1.762 969.215 292.344 293.86 139.611 129.966
14 1.185 0.085 0.516 631.017 381.924 318.37 157.35 127.891
15 1.118 0.883 -2.529 91.163 78.764 303.22 152.11 85.895
16 1.216 1.948 -2.583 349.022 180.342 306.09 153.87 181.578
17 1.143 0.626 -0.918 113.232 71.204 294.74 149.01 89.851
18 1.213 1.262 -0.024 158.854 113.322 287.20 147.03 94.709
19 1.201 1.610 -0.982 707.907 179.586 309.34 148.74 137.411

20 1.229 0.651 2.095 161.136 139.322 301.93 148.27 91.440

Average Cost 301.93 148.27 109.93
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Table C.2

Monte Carlo Simulation U2

Run - -
No. 2(0) b(0) x(0) Jorro Jspp Jorro  IsEp JopT

1 1.205 0.725 -0.973 69.074 29.864 69.07 29.86 56.265
2 1.219 0.784 -1.426 110.867 82.737 89.97 56.30 73.966
3 1.198 l1.762 -3.539 737.160 167.274 305.70 93.29 174.181
4 1.203 1.694 -0.581 446.164 160.766 340.82 110.16 100.537
5 1.230 0.724 -1.227 163.426 58.810 305.34 99.89 63.176
6 1.224 0.734 -0.839 122.513 95.318 274.87 99.13 80.342
7 1.205 0.886 1.680 85.127 62.871 247.76 93.95 58.763
8 1.209 1.561 0.348 131.635 78.527 233.25 92.02 67.055
9 1.218 1.708 0.540 410.976 244.943 252.99 109.01 215.156
10 1.186 1.106 -1.218 178.816 96.080 245.58 107.72 94.885
11 1.229 0.518 0.097 300.744 314.394 250.59 126.51 233.382

12 1.242 1.266 0.187 129.774 57.956 240.52 120.80 42.202

13 1.201 0.200 -1.762 1000.099 201 _394

to
\O
@
\0
n
w
w
0
[\

[

14 1.193 0.085 0.516 602.795 425,495 320.65 154.74 127.891
15 1.165 0.883 -2.529 90.647 . 84.280 305.32 150.05 85.895
16 1.207 1.948 -2.583 369.494 177.491 309.33 151.76 181.578
17 1.175 0.626 -0.918 122.203 81.956 298.32 147.66 89.851
18 1.205 1.262 -0.024 154.300 110.445 290.32 145.59 94.709
19 1.200 1.610 -0.982 758.806 177.905 314.98 147.29 137.411

20 1.212 0.651 2.095 161.938 131.846 307.33 146.52 91.440

Average Cost 307.33 146.52 109.93



-137-
Table C.3

Monte Carlo Simulation U3

Run — —_
No. a(0) b (0) x(0) JOLFO JSEP JOLFO JSEP JOPT
1 1.205 0.725 -0.973 20.100 7.293 20.10 7.29 12.498

2 1.219 0.784 -1.426 28.144 18.484 24.12 12.89 16.006
3 1.198 1.762 ~-3.539 135.127 35.473 61.12 20.42 41.542
4 1.203 1.694 -0.581 89.465 32.027 68.21 23.32 23.062
5 1.230 0.724 -1.227 48.283 15.784 64.22 21.81 14,226
6 1.224 0.734 -0.839 31.644 22.475 58.79 21.92 17.867
7 1.205 0.886 1.680 20.748 14.637 53.36 20.88 13.202
8 1.209 1.561 0.348 27.407 16.845 50.11 20.38 15.135
9 1.218 1.708 0.540 82.444 51.901 53.71 23.88 48.439
10 1.186 1.106 -1.218 40.858 20.887 52.42 23.58 20.826
11 1.229 0.518 0.097 91.201 85.950 55.95 29.25 52.800
12 1.242 1.266 0.187 29.973 12.212 53.78 27.83 9.786
13 1.201 0.200 -1.762 301.462 117.551 72.84 34.73 30.360
14 1.193 0.085 0.516 395.297 291.287 95.87 53.06 29.339
15 1.165 0.883 -2.529 24.691 21.561 91.12 50.96 21.803
16 1.207 1.948 -2.583 65.716 36.872 89.54 50.08 42.741
17 1.175 0.626 -0.918 30.312 20.746 86.05 48.35 20.025
18 1.205 1.262 -0.024 34.765 24.142 83.20 47.01 21.262
19 1.200 1.610 -0.982 147.008 35.524 86.56 46.40 31.045
20 1.212 0.651 2.095 51.519 37.683 84.81 45.97 . 22.471

Average Cost 84.81 45,97 25,22
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Table C.4

Monte Carlo Simulation U4

Run - -
No. 2(O b (0) x(0) Jorro Isep Jorro JsEp Jopr
1 1.212 0.725 =0.973 19.693 7.291 19.69 7.29 12.498

2 1.245 0.784 -1.426 30.930 21.107 25.31 14.20 16.006
3 1.197 1.762 -3.539 125.604 35.155 58.74 21.18 41.542
4 ~ 1.208 1.694 -0.581 86.506 32.060 65.68 23.90 23.062
5 1.271 0.724 -1.227 46.881 18.671 61.92 22.86 14.226
6 1.257 0.734 -0.839 38.813 25.801 58.07 23.35 17.867
7 1.213 0.886 1.680 21.198 15.116 52.80 22.17 13.202
8 1.221 1.561 0.348 27.228 17.183 49.60 21.55 15.135
9 1.243 1.708 0.540 81.925 56.215 53.19 25.40 48.439
10 1.169 1.106 -1.218 39.303 19.932 51.81 24.85 20.826

11 1.269 0.518 0.097 99.595 97.435 56.15 31.45 52.800

12 1.298 1.266 0.187 34.086 13.500 54.31 29.96 9.786
13 1.202 0.200 -1.762 300.745 118.467 73.27 36.76 30.360

14 1.185 0.085 0.516 410.689 265.029 97.37 53.07 29.339
15 1.118 0.883 -2.529 25.196 19.814 92.56 50.85 21.803
16 1.216 1.948 -2.583 62.872 37.544 90.70 50.02 42.741
17 1.143 0.626 -0.918 28.050 17.574 87.02 48.11 20.025
18 1.213 1.262 -0.024 35.998 24.857 84.18 46.82 21.262
19 1.201 1.610 -0.982 138.125 35.919 87.02 46.25 0 31.045
20 1.229 0.651 2.095 51.669 40.260 85.26 45.95 22.471

Average Cost 85.26 45.95 25.22
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Table

C.5

Monte Carlo Simulation U5

Sz? a(0) b(0) x(0) JOLFO JSEP 3:.OLFO EéEP JOPT
1 1.205 0.725 =-0.973 111.715 80.726 111.72 80.72 172.362
2 1.21° 0.784 -1.426 410.635 352.109 261.18 216.41 285.854
3 1.198 1.762 -3.539 706.219 479.799 409.52 304.21 515.761
4 1.203 1.694 -0.581 796.118 412.957 506.17 331.40 256.066
5 1.230 0.724 -1.227 214.843 134.544 447 .91 292.03 132.889
6 1.224 0.734- -0.839 386.692 233.277 437.70 282.23 227.986
7 1.205 0.886 1.680 220.483 188.011 406.67 268.77 169.176
8 1.209 1.561 0.348 392.105 229.877 404.85 263.91 183.818
9 1.218 1.708 0.540 962.742 828.595 466.84 326.65 691.488
10 1.186 1.106 -1.218 413.583 336.777 461.51 327.69 279.181
11 1.229 0.518 0.097 1130.142 1061.054 522.30 394.36 793.478
12 1.242 1.266 0.187 396.185 178.950 511.79 376.41 137.766
13 1.201 0.200 -1.762 3269.505 877.106 723.92 414.92 430.654
14 1.193 0.085 0.516 3508.175 820.996 922.80 443.93 393.552
15 1.165 0.883 -2.529 223.028 183.49¢ 876.14 426.56 204.595
16 1.207 1.948 -2.583 808.132 608.232 871.90 437.92 564.735
17 1.175 0.626 -0.918 332.343 247.908 840.16 426.74 292.189
18 1.205 1.262 -0.024 537.145 429.057 823.32 426.87 372.793
19 1.200 1.610 -0.982 901.496 390.079 827.44 424.93 335.091
20 1.212 0.651 2.095 328.367 341.459 802.48 420.75 231.623
Average Cost 802.48 420.75 333.55
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Table C.6

Monte Carlo Simulation U6

ﬁﬁ? a(@) b0y x(0)  Jopg JsEp Jotro  Jsep JopT
1 1.205 0.725 -0.973 263.893  270.026 263.89  270.03  373.682
2 1.219 0.784 -1.426 943.310  790.982 603.60 530.50 655.758
3 1.198 1.762 =3.539 1927.855 1037.637 1045.02 699.55 1093.491
4 1.203 1.694 -0.581 1450.612  690.182 1146.42 697.21  457.420
5 1.230 0.724 -1.227 336.973  329.998 984.53 623.77 253.131
6 1.224 0.734 -0.839 884.016  446.696 967.78 594.25 466.717
7 1.205 0.886 1.680 431.998  380.801 891.24 563.76  339.075
8 1.209 1.561 0.348 764.472  457.306 875.40 550.45 360.579
9 1.218 1.708 0.540 1955.645 1728.216 995.42 681.32 1412.076
10 1.186 1.106 -1.218 1006.145  688.350 996.49 682.02 538.284
11 1.229 0.518 0.097 2551.711 2252.933 1137.86 824.83 1651.491
12 1.242 1.266 0.187 800.986  387.971 1109.80 788.42  298.200
13 1.201 0.200 -1.762 2602.60C 2112.281 1224.63 850.26 920.533
14 1.193 0.085 0.516 11046.683 1257.690 1926.21 916.51 775.195
15 1.165 0.883 =-2.529 403.048  331.811 1824.66 877.53  388.504
16 1.207 1.948 -2.583 1795.522 1281.303 1822.84 902.76 1087.797
17 1.175 0.626 -0.918 641.414  494.509 1753.35 818.75 591.436
18 1.205 1.262 -0.024 1111.463  956.722 1717.69 883.08 826.138
19 1.200 1.610 -0.982 1004.562  654.970 1680.15 871.07 560.563
20 1.212 0.651 2.095 705.120  696.304 1631.40 862.33 472.159

Average Cost 1631.40 862.33 676.11



Run

Monte Carlo Simulation U7
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Table C.

7

No. a(0) b(0) x(0) JOLFO JSEP JOLFO JSEP JOPT
1 1.212 1.0 -0.973 69.045 53.939 69.05 53.94 56.265
2 1.245 1.0 =-1.426 93.451 84,331 81.25 69.14 73.966
3 1.197 1.0 -3.539 177.063 174,022 113.19 104.10 174.181
4 1.208 1.0 -0.581 132.679 100.506 118.06 103.20 100.537
5 1.271 1.0 -1.227 89.521 64.201 112.35 95.40 63.176
6 1.257 1.0 -0.839 101.449 90.722 110.53 94.62 80.342
7 1.213 1.0 1.680 64.36 60.679 103.94 89.77 58.763
8 1.221 1.0 0.348 74.417 69.132 100.25 87.19 67.055
9 1.243 1.0 0.540 240.460 264.459 115.83 106.89 215.156

10 1.169 1.0 -1.218 111.012 89.680 115.35 105.17 94,885

11 1.269 1.0 0.097 326.004 350.993 134.50 127.51 233.382

12 1.298 1.0 0.187 63.648 48.082 128.59 120.90 42,202

13 1.202 1.0 -1.762 136.168 131.324 129.18 121.70 129.966

14 1.185 1.0 0.516 124.166 - 125.052 128.82 121.94 127.891

15 1.118 1.0 -2.529 73.401 74.045 125.12 118.75 85.895

le 1.216 1.0 -2.583 173.536 187.504 128.15 123.04 181.578

17 1.143 1.0 -0.918 91.204 77.940 125.98 120.40 89.851

18 1.213 1.0 -0.024 110.348 99.460 125.11 119.23 94.709

19 1.201 1.0 -0.982 159.215 141.599 126.90 120.46 137.411

20 1.229 1.0 2.095 109.958 99.740 126.05 119.37 91.440

Average Cost 126.05 119.37 109.93
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Table C.8

Monte Carlo Simulation U8

Sg? a(0) b(0) x(0)  Jorro Jsep EQLFO Tsmp Jopr
1 1.2 0.725 -0.973 26.682  29.625  26.68  29.63  56.265
2 1.2 0.784 -1.426 61.401  75.964  44.04  52.79  73.966
3 1.2 1.762 -3.539 161.962 167.790  83.35  91.13 174.18l
4 1.2 1.694 -0.581 132.130 160.043  95.54 108.36 100.537
5 1.2 0.724 -1.227 59.371  56.366  88.31  97.96  63.176
6 1.2 0.734 -0.839 84.159  87.822  87.62  96.27  80.342
7 1.2 0.886  1.680 65.571  61.573  84.47  91.31  58.763
g8 1.2 1.561  0.348 71.640  77.287  82.86  89.56  67.055
9 1.2 1.708  0.540 219.980 232.843  98.10 105.48 215.156
10 1.2 1.106 -1.218 85.611  99.233  96.85 104.85  94.885
11 1.2 0.518  0.097 306.562 269.154 115.92 119.79  233.382
12 1.2 1.266  0.187 42.051  53.972 109.76 114.31  42.202
13 1.2 0.200 -1.762 398.525 289.713 131.97 127.80 129.966
14 1.2 0.085  0.516 627.885 454.03  167.40 151.10 127.891
15 1.2 0.883 -2.529 99.838  89.136 162.89 146.97  85.895
16 1.2 1.948 -2.583 172.321 175.380 163.48 148.75 181.578
17 1.2 0.626 ~-0.918 89.551  91.454 159.13 145.38  89.851
18 1.2 1.262 -0.024 98.902 108.328 155.79 143.32  94.709
19 1.2 1.610 -0.982 154.027 177.376 155.69 145.11  137.411
20 1.2 0.651  2.095 143.634 126.561 155.09 144.18  91.440

Average Cost 155.09 144.18 109.93



Run

Monte Carlo Simulation S1
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Table C.9

No. 200 BO - x)Iq 0, Jsep Torro  Jsep Jopr
1 0.812 0.725 =-0.973  13.123 13.219 13.12  13.21  13.628
2 0.845 0.784 -1.426  16.966 15.972 15.04  14.6 16.094
3 0.797 1.762 -3.539  71.876 72.995 33.98  34.06  78.966
4  0.808 1.694 =-0.581  39.543 48.787 35.37  37.74  27.221
5 0.871 0.724 -1.227  33.445 32.313  34.99  36.66  28.036
6  0.857 0.734 -0.839  36.947 35.587 35.31  36.48  29.167
7  0.813 0.886 1.680  24.131 23.528 33.71  34.63  23.089
8 0.821 1.561 0.348  27.717 28.361 32.96  33.85  26.267
9  0.843 1.708 0.540  36.689 40.805 33.38  34.62  27.338

10 0.769 1.106 -1.218  18.126 19.586 31.85  33.12  19.135

11 0.869 0.518 0.097  38.811 40.311 32.48  33.77  35.303

12 0.898 1.266 0.187  23.0l4 22.20  31.70  32.81  14.290
13 0.802 0.200 -1.762  59.689 52.1 33.85  34.29  30.304

14  0.785 0.085 0.516  19.556 19.658 32.83  33.24  27.937

15  0.718 0.883 =-2.529  49.977 46.426  33.97  34.12  52.109
16  0.816 1.948 -2.583  54.568 57.771  35.26  35.60  55.494
17 0.743 0.626 -0.918  13.333 12.92  33.97  34.27  13.263

18  0.813 " 1.262 -0.024  10.362 11.535 32.66  33.00 9.901

19 0.801 1.610 =-0.982  50.230 51.218 33.58  34.48  39.835

20  0.829 0.651 2.095  61.816 57.706 34.99  35.65  43.637

Average Cost 34.99 35.65 30.55
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Table C.10

Monte Carlo Simulation S2

32? ao - bl - x(0) Jorp, Jsep Jorro  Jsep JopT
1 0.812 0.725 =-0.973 13.373  13.258  13.37  13.26  13.028
2 0.845 0.784 -1.426 20.973  18.924  17.17  16.09  16.971
3 0.797 1.762 -3.539 87.171  81.426  40.51  37.87 102.918
4 0.808 1.694 -0.581 52.253  70.731  43.44  46.08  32.456
5 0.871 0.724 -1.227 37.966  36.244  42.35  44.12  29.187
6 0.857 0.734 -0.839 46.384  46.084  43.02  44.44  37.261
7 0.813 0.886  1.680 29.117  28.603  41.03  42.18  27.676
8 0.821 1.561  0.348 31.422  33.180  39.83  41.06  29.023
9 0.843 1.708  0.540 37.986  42.890  39.63  41.26  27.004
10 0.769 1.106 -1.218 17.820  19.051  37.45  39.04  18.906
11 0.869 0.518  0.097 38.387  40.050  37.53  39.13  37.944
12 0.898 1.266  0.187 39.597  40.749  37.70  39.27  19.706
13 0.802 0.200 -1.762 65.662  61.738  39.85  40.95  34.741
14 0.785 0.085  0.516 20.268  20.655  38.46  39.54  39.313
15 0.718 0.883 -2.529 65.256  61.736  40.24  41.02  75.397
16 0.816 1.948 -2.583  72.620  81.117  42.27  43.53  76.036
17 0.743 0.626 =-0.918 14.617  13.994  40.64  41.79  14.139
18 0.813 1.262 -0.024 10.349  10.921  38.96  40.08  10.127
19 0.801 1.610 =-0.982 85.745  81.523  40.37  42.26  47.329
20 0.829 0.651  2.095 81.378  76.628  42.41  43.97  55.058

Average Cost 42.41 43.97 37.21
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